AD-A153 988 SPECIFICATION OF SOFTWARE QUALITY ATTRIBUTES VOLUNE 1 1/2
F[NRL REPORT(U) BOEING REROSPACE CO SEATTLE Mi
P BOWEN ET AL. FEB 85 D182-11678-1
UNCLASSIFIED RRDC—TR-SS—Z?-VOL—i F306082-82-C-0437 F/G 972

———— s 38T m e MIRT AT BT AR LT AV W W O, W IVTEY

| fllo g =

EE =igk

‘ .
= 2
IL2s fiis e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

RADC-TR-85-37, Vol | (of three)
Final Technical Report
February 1983

AD-A153 988 -

SPECIFICATION OF SOFTWARE - Jf
QUALITY ATTRIBUTES |

Boeing Aerospace Company

DTIC

ELECTERN o
Thomas P. Bowen, Gary B. Wigle and Joy T. Tsal &%Y 201085 AR
P L «:,14.

B

APPROVED FOR PUBLIC ~RELEASE; DISTRIBUTION UNLIMITED

o :
% -

S * et

W

B ROME AIR DEVELOPMENT CENTER .

e o Air Force Systems Command .

" E= Griffiss Air Force Base, NY 13441.5700

| =

3 85 4 23 207 |

| ® \ ‘

R s . - i

ARSI e s A St Shm g B St B YAl S AR A SRR YA A a s o s " - R T——

This report has been reviewed by the RADC Public Affairs Office (PA) and :
is releasable to the National Technical Information Service (NTIS). At NTIS -
it will be releasable to the general public, including foreign nations. a

RADC-TR-85-37, Volume I (of three) has been reviewed and is approved
for publication.

APPROVED:)%?M. /{ }é)m%/

ROGER B. PANARA ' %
Project Engineer ’

———
[
i,

ala o

RAYMOND P. URTZ, JR.
Technical Director
Command & Control Division : ﬂ

,gg/é/éx

L DONALD A. BRANTINGHAM
b Plans Office

FOR THE COMMANDER:

1 If your address has changed or if you wish to be removed from the RADC

L @ mailing list, or if the addressee is no longer employed by your organization,
’ please notify RADC (COEE) Griffiss AFB NY 13441-5700. This will assist us in .
maintaining a current mailing list. L

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

R 3 RS) a v . T . . Lo . . '~‘ Tl . - g . C. U I
-y & Y PR SN TP S G I D h N, R - P [VY S - Ty YR SR .|

. v err—
R N I Y

R~

!."

:

UNCIASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Ts REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A
7s SECLRAITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for public release; distribution
2b DECLASSIFICATION/DOWNGRADING SCHEDULE unlimited.
N/A
4 PERFCRMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
DI82-11678-1 RADC-TR-85-37,Vol I (of three)
68 NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
tIf applicadle) . ~ N
Boeing Aerospace Company Rome Air Development Center (COEE)
6c. ADDRESS (City. State and 7P Code) 7b. ADORESS (City, State and ZIP Code)
P.0. Box 3999
Seattle WA 98124 CGriffiss AFB NY 13441-5700
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTARUMENT IDENT:FICATION NUMBER
QRGANIZATION (}f applicabie, . Py Y
Rome Air Development Center COEFE F30602-82-C-0137
8c ADORESS (City. State and ZIP Code) 10 SOURCE OF FUNDING NOS
R by s PROGRAM PROJECT TASK WORK UNIT
Griffiss AFB NY 13441-5700 ELEMENT NO. NO. NO. NO
63728F 2527 03 05
11 TITLE (Include Security Classification
SPECIFTCATION OF SOFTWARE QUALITY ATTRIBUTES
12. PEASONAL AUTHOR(S} . .
Thomas P. Bowen, Garv B. Wigle, Jay T. Tsai
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr, Mo., Day) 15. PAGE COUNT
Final rrom Aug 82 ro Oct 84 February 1985 122
16. SUPPLEMENTARY NOTATION
N/A
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and tdentify by biock number)
FIELD GROUP SuB. GR. Software Quality
09 02 Software Quality Metrics

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Volume I (of three) describes the results and presents recommendations for integrating the
RADC developed software quality metrics technology into the Air Force software acquisition
management process and for changing Air Force acquisition documentation. In addition,
changes to the baseline software quality framework are presented and features of a proposed
specification methodology are summarized. Terminology and life cycle phases are consistent
with the December 1983 draft of the DOD-STID-SDS, Defense System Software Development.

Volume [T (of three) describes how the software acquisition manager specifies software
quality cequirements, consistent with needs, Factor interrelationships, tradeoff among
factor qualitv levels in terms of relative costs and an example for a command and control
application are described. Procedures for assessing compliance with the specified require-
ments based on an analvsis of data collected using procedures described in volume IIT are
included.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED . SAME AS RPT % OTIC USERS [U'NCLASSIFIED
22s. NAME OF RESPONSIBLE INDIVIODUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
‘Include Area Code)
Roger B. Panara (315) 330-4654 RADC (COEE)
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

a o

(&

i s AAeita-titn Dot v San S 0 fen S £ b

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

AP B WI UL T e wy ey engreey

.

Volume LID (of three) describes procedures and technigues

levels,
scoresheets for scoring cach factor are provided,

DTIC

EILLECTE]
MAY 2 2 1985

ey

ity Coges

o Aand/or 7
amclal j

A\

Ty Y. ¥

for cvaluating achieved quality

Worksheets for use in metric data collection by softwire 1ite cvele phases and

UNCLASSIFIED

SECUMITY CLASSIFICATION OF THIS PAGE

Ty

T

v

“’U——r‘ \ .
. PR ;
v ‘ .

LAkt 4 S A u gut Al AL

PREFACE

This document is the first of three volumes of the Final Technical Report (CDRL-

A004) for the Specification of Software Quality Attributes contract, F30602-82-C-
0137. Contract work was performed by Boeing Aerospace Company (BAC) for Rome
Air Development Center (RADC) to provide methods, techniques, and guidance to Air
Force software acquisition managers who specify the requirements for software

quality.

The purpose of this contract was to (1) consolidate results of previous RADC contracts
dealing with software quality measurement, (2) enhance the software quality
framework, and (3) develop a methodology to enable a software acquisition manager to
determine and specify software quahty factor requirements. We developed the
methodology and framework elements/to foc':us on an Air Force software acquisition
manager specifying quality requirements for embedded software that is part of a
command and control application. This methodology and most of the framework

elements are generally useful for other applications and different environments.

The Final Technical Report consists of three volumes:

a. Volume], Specification of Software Quality Attributes—Final Report.

b. Volume II, Specification of Software Quality Attributes—Software Quality
Specification Guidebook.

c. VYolume IIl, Specification of Software Quality Attributes—Software Quality

Evaluation Guidebook.

Volume I describes the results of research efforts conducted under this contract,
including recommendations for integrating quality metrics technology into the Aijr
Force software acquisition management process, recommended changes to Air Force
software acquisition documentation, and summaries of software quality framework

changes and specification methodology features.

Volumes II and III describe the methodology for using the quality metrics technology
and include an overview of the software acquisition process using this technology and
the quality framework. Volume II describes methods for specifying software quality

requirements and addresses the needs of the software acquisition manager. Volume IlI

-i-

.
.
-
S
r
. .. . C . N .. BN .o T . R N . S e
A . S O U e) - e . ’ S - e T)
{ o - e L. - . . I L RPN SR L AL P e S P e
e e a a P I SO O P DGR Yy I S PP) D Uy SRR TP AR YL N YL 6 WO 0, ¥ W, W PR 0 €, W ICAP L VAL VLI .

e . Lk s
N st N e
D . .
. et .

ek 2o
PR
AR

f

0 I

—p———
e

Rl i iy

R A '. : A-'

NP n e St

Pt el ASh S abel s Sl asit iy il SR SN S AL Sty W W IR T v W T A . L. T - - T Pl - - - 05 il B e i et Dl ""'71
., .

describes methods for evaluating achieved quality levels of software products and

addresses the needs of data collection and analysis personnel.

Volume Il also describes procedures and techniques for specifying software quality
requirements in terms of quality factors and criteria. Factor interrelationships,
relative costs to develop high quality levels, and an example for a command and
control application are also described. Procedures for assessing compliance with

specified requirements are included.

Volume III also describes procedures and techniques for evaluating achieved quality
levels of software products. Worksheets for collecting metric data by software life-
cycle phase and scoresheets for scoring each factor are provided in the appendixes.
Detailed metric questions on worksheets are nearly identical to questions in the
Software Evaluation Reports proposed as part of the Software Technology for
Adaptable Reliable Systems (STARS) Measurement data item descriptions (DID).

Terminology and life-cycle phases used in the guidebooks are consistent with the
December 1983 draft of the Department of Defense software development standard
(DOD-STD-SDS) (e.g., the term computer software configuration item (CSCI) is used

rather than computer program configuration item (CPCI)).

i~

. - P I A .
Tt H .. b e St
RPCSCEAR AN SR L RFRR YL YL, W AR IR W W

1.1
1.2
1.3
1.4
1.5
1.6

- 2.1

2.2
t;nf 2.3
o 2.4
..
&

: 2.5

3.1

Aot o S I S A T)
Lot b '-'."‘.'.“
. el tal
A - AN

M h a e SRR S - s Sme " ey Aunb g MRS /M AL DI Sl - Sl St bl o<l “hit M A A A S R R

CONTENTS

1.0 EXECUTIVE SUMMARY

Overview of Contract Results
Objectives

Background

Technical Approach

Task Approach and Accomplishments

Conclusions

2.0 ROLE OF QUALITY METRICS IN THE SOFTWARE
[ACQUISITION PROCESS

Software Acquisition Process

2.1.1 System Acquisition Life Cycle
2.1.2 Software Development Cycle
2.1.3 Life-Cycle Relationships

2.1.4 Software Acquisition Management
2.1.5 Verification and Validation

2.1.6 Quality Assurance

Quality Metrics

2.2.1 Framework

2.2.2 Quality Specification

2.2.3 Quality Monitoring

Software Acquisition Using Quality Metrics
Implementing Quality Metrics

2.4.1 Near-Term Implementation

2.4.2 Long-Term Implementation
Potential Benefits and Problems

2.5.1 Benefits

2.5.2 Problems

3.0 QUALITY METRICS FRAMEWORK

Software Quality Factors

-iii-

1-1
1-1
1-2
1-3 -
1-3 4
1-5]
1-11 ...-_-..J

-

2-1

2-3]
2-3 rrry
2.5 S
2-7 :;:~3
2-8]
2-9 “!
2-11 o
2-13

N

21

2-15 s
Ty

}

2-15
2-22
2-23 S
2-31 RN
2-31 N 4
2-32 '
2-35
2-35
2-36

3-1
3-3

3.2

3.3

3.4

3.5

3.6

3.1.1
3.1.1.1 Description
3.1.1.2 Changes

3.1.2

3.1.3

Software Quality Criteria

3.2.1 Description

3.2.2 Changes

Software Quality Metrics

3.3.1 Description

3.3.2 Changes

Metric Worksheets

3.4.1 Description

3.4.2 Changes

Factor Scoresheets

3.5.1 Description

3.5.2 Changes

References

Factor Definitions and Rating Formulas

Quality Factor Interrelationships

Quality Factor Relationships to Life-Cycle Phases

QUALITY METRICS METHODOLOGY

4.1
4.2

Overview

Features

VALIDATION PLAN

RECOMMENDED REVISIONS

6.1
6.2
6.3

Review and Recommendation Process

Review Analysis

Detailed Recommended Changes

6.3.1 DOD-STD-SDS
6.3.2
6.3.3

6.3.4

. - Tt a4 e
P LI P W W e)

DI-S-X101 System/Segment Specification
DI-R-X105 Software Quality Assurance Plan
DI-E-X107 Software Requirements Specification

-jv-

\|»)
N
o

4-1
4-1
4-5

5-1

6-1
6-1
6-3
6-5
6-5
6-7

6-7

..........

Page
6.3.5 DOD-STD-SQS 6-8
6.3.6 MIL-STD-1521B 6-8
6.3.7 AFR 800-14 6-9
6.3.8 Guidebooks 6-10
Appendix A—Metric Worksheets A-1
Appendix B—Factor Scoresheets B-1
Appendix C—Software Quality Evaluation Report C-1
:? '::-]
LD -='
-
.
-V -
e e R e e e T

- At Seath Dol e, Vit e gl M g A S S 45 Bl lta R - TN T PR the "R Rl M - Sl Sl Sl Al Gl L N e TN TN TN N .

FIGURES
Page
1.3-1 Software Quality Model 1-4
1.5-1 Task Flow Diagram 1-6
1.5-2 Quality Metrics Technology —Life-Cycle Model 1-8
1.5-3 Software Quality Measurement Methodology 1-10
2.1-1 System Acquisition Life-Cycle Phases and Decision Points 2-2
2.1-2 Software Development Cycle 2-4
2.1-3 Life-Cycle Relationship between the System and the 2-6
Operational Software
2.1-4 Relationship of Software Development and V&V 2-10
2.1-5 Software QA Function 2-12
2.2-1 Performance Factor Attributes 2-17
2.2-2 Design Factor Attributes 2-18
2.2-3 Adaptation Factor Attributes 2-19
2.3-1 Software Acquisition Quality Metrics Functions 2-24
2.3-2 Air Force Acquisition Relationships Involved in 2-25
Quality Metrics Functions
2.3-3 Recommended Responsibilities and Relationships for the QM 2-26
Specification Function
2.3-4 Recommended Responsibilities and Relationships for the QM 2-30
Monitoring Function
2.4-1 Relationship between Product Divisions and DACS 2-34
3.1-1 Rating Estimation and Rating Assessment Windows 3-6
4.0-1 Software Quality Specification and Evaluation Process 4-2
4.0-2 Flow of Software Quality Requirements b-4
!
g
| @
-
g
o
“ -vi-
o
- -
| @
i R ::‘;:;_' -

1~rv

,_
T

.

0% ok ok un g

e

AL

Ty - ————Y
T A S
PR

T

2.2-1
2.2-2
2.3-1
3.1-1
3.1-2
3.2-1
3.2-2
3.3-1
3.4-1
3.4-2
6.1-1

6.3-1

TABLES

Quality Concerns
Software Quality Factor Interrelationships

Organizational Evaluation

Software Quality Factor Definitions and Rating Formulas

Quality Factor Ratings

Software Quality Factors and Criteria
Quality Criteria Definitions

Quality Metrics Summary

Metric Worksheet/Life-Cycle Correlation
Software Development Products
Candidate Documents

Documentation Recommended for Revision

-vii-

[

-
{
t
Abgnn

- - e e e
o e P

e e e e e
L, o L .
I N LS bt cdd 2

i

I
L

. or

"l“' l‘[>.
‘)JJ.‘

o

_a’

-
PRV I

GLOSSARY

AFCMD Air Force Contracts Management Division

AFCL Air Force Logistics Command _
AFPRO Air Force Plant Representative Office ’

AFSC Air Force System Command .'(j]
AMT Automated Measurement Tool _ _1
APSE Ada programming support environment ’i'_'—'j’.‘-‘
ASD Aeronautical Systems Division _"- .:1‘_-:
BAC Boeing Aerospace Company s

CDR critical design review R
CPCI computer program configuration item 4
CSC computer software component

CSClI computer software configuration item

DACS Data and Analysis Center for Software

DAE Defense Acquisition Executive

DID data item description

DOD Department of Defense

DOD-STD-SDS Department of Defense software development standard

g DOD-STD-SQS Department of Defense software quality standard
[Z . DRC Dynamics Research Corporation
{-'_. ESD Electronic Systems Division
- FCA functional configuration audit
E FSD full-scale development
& HOL high order language
; 1/0 input/output
; V&YV independent validation and verification
o OPR Office of Primary Responsibility
- PCA physical configuration audit
! : PDR preliminary design review
: QA quality assurance
o QM quality metrics
r RADC Rome Air Development Center
; SD Space Division
;-
' -viii-
@
L

)

Wy ap——r

!'l'-

La

’

P~ NPV e gl e i - aaiik® ot

SDR
SPO
SSR
STARS
S/W
TRR
V&V

Came - iuie sbian

system design review

System Program Office

software specification review

Software Technology for Adaptable Reliable Systems
software

test readiness review

verification and validation

—ix-

. e . " . o
» AT

AP .- LY
AL SO MU A, . Y L, W

b S Al e Bt Al Al *Adi i I A AR S T

R
R -L. W |

it e b e e

U
R

At T ham 2 ala s s s

. .
AR, WSS, |

b -
L
-

<@
r

vTrTYvrww

Laude o an g

el T e e

| el o Rt Tt had At Bt Sedi i Sk Yl L S A i A A S T A N Y An Sl il o M S AL A Al A S i B AL SO BRI pal SR S

1.0 EXECUTIVE SUMMARY

Work described in this document was performed by Boeing Aerospace Company (BAC)
for Rome Air Development Center (RADC), Griffiss Air Force Base, New York, under
the Specification of Software Quality Attributes contract, F30602-82-C-0137. In this
section, contract results are summarized, contract objectives are outlined, background
information is provided, the technical approach to achieving objectives and major

accomplishments are summarized, and several conclusions are explored.

1.1 OVERVIEW OF CONTRACT RESULTS

BAC extended and enhanced RADC quality metrics (QM) technology into a form usable
by an Air Force software acquisition manager. RADC QM technology work began in
1976 as an effort to extend Quality Assurance (QA) beyond an administrative checklist
type of activity to include quantitative considerations of software quality. This was
achieved through the two processes of QM technology: (1) specifying software quality
requirements in terms of quality factors (e.g. reliability, maintainability) and (2)
periodically evaluating achieved quality levels throughout software development.
These two processes are complementary in that periodic measurements enable a

comparison with specified requirements.

The Air Force acquisition manager specifies software quality requirements
concurrently with technical performance and design requirements, after consultation
with user and logistics personnel. Procedural steps in the QM methodology guide the
acquisition manager in developing software quality requirements and in making trade-
off decisions that include quality considerations. Trade-off techniques include
relative cost considerations for factor qualities over the system life cycle, the relative
importance of factors and factor attributes, and the feasibility of achieving quality

levels for specific factor considerations.

Points in the software development cycle at which quality levels are measured and
reported coincide with review and audit points specified in the proposed Department
of Defense standard for software development (DOD-STD-SDS). Source materials for

data collection are data item descriptions (DID) identified in DOD-STD-SDS.

i

R
'

[Lo fLoat et s
‘, ' .I, ,'-‘;".'-Vl.’ .4
R T

L P A
. R . Tl e - . . DI S .. S e R S L
@ et e o DTS DN VA WO UR. APUEAT W VAR IPRP . Wtk WL Sy Gy Sy SO uy ot U SIS 5. e SE A 1 |

.....

SECVL A 8 4840 Juen-vun T e - 20 -2t R auFb ety B BaNiae SBe R SV S Ui e o vt S it e St e b At Ml And St Mt Al il Sedl Sull S At st el Rl ¢ ,-‘-‘v,--—j~

Measurements are, for the most part, consistent with those being specified in the
Software Evaluation Report DIDs for Software Technology for Adaptable Reliable

Systems (STARS). A system for reporting measurement data and results provides

timely feedback to the acquisition manager and enables decision making and
corrective action early in the development cycle for issues that may adverseiy affect

cost and schedule.

QM technology has matured beyond the research stage and is ready for the test of use
by acquisition managers. Procedural steps in the methodology have been documented

in two guidebooks—one for specification and one for evaluation.

1.2 OBJECTIVES

Primary objectives for this contract were (1) to develop a methodology to enable a

software acquisition manager to determine and specify software quality factor

requirements and (2) to enhance the software quality framework. The methodology for .
determining and specifying quality factor requirements is focused on an Air Force :'.‘-;
acquisition manager procuring embedded software that is part of a command and
control application. The software quality framework consists of the software quality *__-_1
factors, attributes of those factors (criteria and metrics), and the mechanisms (e.g., - ,’

forms, tables, worksheets, and scoresheets) provided to enable specifying quality

factor requirements and evaluating achieved quality levels. '.' A -3

Another objective for this contract was to prepare the QM technology for possible use
by Air Force product divisions in acquiring new products. This involved defining an
approach to integrating this technology into the Air Force software acquisition

management process and ensuring that the technology elements were consistent with

current Department of Defense (DOD) concepts. For example, life-cycle phases and

. terminology used in the quality metrics technology should be consistent with DODD
R 5000.1 and DOD-STD-SDS.

»... Another objective for this contract was to prepare a plan for validating the
= specification methodology to ensure its usability within software acquisition
o

- management.

h_

.

..

L

1o 1-2

oo

h'.

A P
e

S IR
PSP

r
p
3
J

s
L
b

s
)
3
§
g
)
3
VA
b

P
3

i]

.,
3

>

b

b Sk "B S S0 B S I~ A 0atide Y fe Caiie Sl Sk adh Sl Sad Sl e el nd e i Al AL Sl Ml S AC R R A OO i Bl 2 MR A e i et i A et S St A - e o iy
N

1.3 BACKGROUND

There has been a recent increased awareness of critical problems encountered in

developing large-scale systems involving software. These problems include cost and
schedule overruns, high cost sensitivity to changes in requirements, poor performance

of delivered systems, high system-maintenance costs, and lack of reusability.

The government (DOD in particular), as a customer for large-scale system
developments, has sponsored efforts to address these problems. For example,
development of Ada programming language, Ada programming support environments
(APSE), proposed standards for software development (DOD-STD-SDS) and software
quality (DOD-STD-SQS), the STARS program, the proposed STARS measurement DIDs, : 1

and various development aids and tools. These all provide partial solutions.

Since 1976, RADC has pursued a program intended to achieve better control of

b -
b
b
i!

software quality. Through a series of related contracts, this program has sought to
identify key software quality issues and to provide a valid methodology for specifying
software quality requirements for software developed as part of major Air Force
weapon systems and for measuring achieved quality levels of software products

released incrementally during the software life cycle. A quality model was established

N A e e gin gt -

. N
. .

e

(see Fig. 1.3-1) in which a hierarchial relationship exists between a user-oriented

quality factor at the top level and software-oriented attributes at the second and third

levels (criteria and metrics, respectively). Software quality is measured and predicted

by the presence, absence, or degree of identifiable software characteristics.

The Final Technical Report for this contract consisting of the Final Report (Vol. I), the
Software Quality Specification Guidebook (Vol. II), and the Software Quality
Evaluation Guidebook (Vol. IIl) represents the most recent results of the RADC

software quality program and incorporates pertinent results from previous contracts.

1.4 TECHNICAL APPROACH

The general approach used in accomplishing the objectives described in Section 1.2 was
to f -t develop an approach for integrating QM technology into the Air Force

software acquisition management process. This resulted in definitions of life-cycle

. . . P .‘.' “.-‘ .V.In . . - . . L. -, -) L.
TIPSR N I G S APV W iy, L PR A PP WS N AT G T AT W DD UL T SO U S T DT Y

‘‘‘‘‘‘‘‘‘‘‘

USER-ORIENTED VIEW OF AN
FACTOR ASPECT OF PRODUCT QUALITY

[) SOFTWARE -ORIENTED
CRITERION) (CRITERION) (CRITERION CHARACTERISTICS WHICH
INDICATE QUALITY

{ 1)
-

QUANTITATIVE MEASURES
METRIC METRIC METRIC OF CHARACTERISTICS

Figure 1.3-1 Software Quality Model

. . . - -.' AN -.‘ . . _'.
- R S . .
e e e e
. * * R .-‘\-' -Ii KA AR
% PR — o s o L o T SR AL A TS LI Sl U

Pl [rdiiaa = et Badiar P ol ol adie - p* adi e T T T ™ PO i L ainl “ardh i RO adil % o b 200 i “adinfl Sy i~ B v ol - N aady i A ek et 4 -)

— e FTR———
. B L

Ly wr'; 1

M astan

FAELAN | Y
- ..“ Tt
[P

LUR G SR an gt | Rt s

lll

L andan S AN e i s amma e S g

phases and terminology that were used in enhancing the framework and developing the
specification methodology. Work on the framework and methodology was
accomplished next, using pertinent results from previous RADC contracts concerning
software quality measurement. New methodology techniques were developed for
performing tradeoffs among quality factors and for relating quality levels to cost over
the software life cycle, and metric worksheets (used for collecting metric data) were
revised extensively. We prepared a methodology validation plan and made detailed
recommendations for changes to Air Force documentation dealing with software

quality specification and measurement.

We prepared two guidebooks: Software Quality Specification Guidebook and Software
Quality Evaluation Guidebook. Both describe the role of quality metrics within
software acquisition management and define all framework elements. The
specification guidebook provides a comprehensive set of procedures and techniques for
enabling a software acquisition manager to identify and specify software quality
factor requirements. The evaluation guidebook provides detailed procedures and
techniques to enable data collection personnel to apply quality metrics to software
products and to evaluate levels of quality.

1.5 TASK APPROACH AND ACCOMPLISHMENTS
Work was divided into six separate tasks:

Task 1, Develop and Document Approach
Task 2, Enhance Framework

Task 3, Develop Methodology

Task 4, Develop Validation Plan

Task 5, Develop Guidebook

Task 6, Recommend Revisions

R U A

Figure 1.5-1 summarizes task interrelationships. Detailed findings for each task are

reported in subsequent sections.

Task 1, Develop and Document Approach. The role that quality metrics should play in

software acquisition was analyzed. Related concepts were explored: system

LIPACIN L N
PP WP W W WL WA S WU AP S NI WAl W WL R R g gy

oo
SR S S

ot LirmtBion

PRS- |

RERE P A e S P At Al Sl e Jhak ol S Sl adk S0 A YN & Y B4 4 an shtn Ji dn " AN "RE S M e wad WL RS Aam snd acd s joSie Gl Sk e sl Sedi o shdh Wbl I B s ae o)

CNULO? CDRL AD02
ORA(INTERIM
FRESENTATION REPORT

4

CONLOOY - TASK iy M \ a N
e Quabty Metnc Unilization Approdc CLINGOOR
LEVELOP AND ORAL
! LOCUMENT APPROACH o Propiems 10 be solved o denehtstu be ganed ® Prubiems 10 De sOlved PRESENTATION
_ . Relu.umnu{s among & Predutive Quaily & Bermtity o be gaineo
sOwartart) Quahity factors mMessuremrents ® Relatiwnshis CDRL A004
& Retahiunshgn ® Pregutive medsurements
FINAL
CLIN 007 CDRL A003 REPORT
ORAL INTERIM CDRL A00S
PRESENTATION REPORT TRACE
4 4 > 4
P> CLINODO] - Task S o
CLINOOU2 - TASK 2 ENHANCED # RAMEWORK o | CLINOOO3 - TASK 6
DEVELOP oG udehouok
ENHANCE FRAME WORK ® New tactors ratungs GUIDEBOOK ! RECOMMEND eRevivony
methicy (iteng anyg REVISIONS
'_. SOW4at24124 nerielativnshipys SOWa 1S ;
—> . sowa 16
CLINDOO? . Lgl
ORAI ME THODOLOGY
PRESENTATION @ Speuty feQuirements
& Traceott anarysy
* ® Meta ddta onatysis
B[CLinUoul Task3
DEVELOP SVahdatiun plen
ME THODOLOGY
1 CiNGoo?
P sowai3ariel RAL
PRESENTATION
R 4
T CUNGOOZ Tiona
OEVELOP vaLILATION J
e d PLAN
® tape v e sidtamobanty ® New Quaiity lecturs ana ..’ suwina
AB A e e Metras 1HOM Current S e ® trpecence of former A
S 3ol 0 ocedutes ontiactuaettorts 8 Heword Methaodolongy trgrn * Database ul (Ghedted Frrce wurtware acquanitun
Curtert Con1eacTuss 1t Lty Juat ty met: (gatae Mmanayer

SURT vake NTeROvrRABINTY QuAL METRICS FOR
BOEING TECHNOLOGY BASE
Al REUNRdT Y OIS TRIBUTED SYSTEMS

Figure 1.5-1 Task Flow Diagram

BN S 00— A IS i S Pan e G M 4 R Sl SR A S St S A el S Aa Al S Pl e A A AT A St AR M AL S A S

acquisition life cycle, software development cycle, lifecycle relationships, software
acquisition management, verification and validation, and QA. DODD 5000.! and the
proposed DOD-STD-SDS (Dec. 1983 draft) were used as baselines for phases and -e e

terminology.

- . A life-cycle mode! for use with QM technology was defined (shown in Fig. 1.5-2), and

recommendations were made for both short-term and long-term technology -
implementation. Potential benefits and problems with implementation were also */!

explored. Detailed results are reported in Section 2.0. Concepts for the role of

quality metrics technology in acquisition management and definitions of life-cycle

phases and terminology were used in enhancing the quality metrics framework (Task 2)
and developing the quality metrics methodology (Task 3). A candidate list of
documentation was used as the initial list for investigating and recommending

revisions (Task 6).

Task 2, Enhance Framework. The framework from the most recent RADC quality

measurement contract (described in RADC-TR-83-175) was used as a baseline. -
Factors were grouped under new acquisition concerns, and new rating formulas were |
developed for several factors. Minor changes were made to the organization of the K-
criteria and metrics to provide consistency within the framework and to enable more B
concise specification of requirements. Metric worksheets were revised extensively.

One problem with the worksheets was that the metric questions reflected results from

four different contracts: styles differed and terminology was inconsistent. Another

problem was that worksheets were organized by life-cycle phases different than those
defined by the life-cycle mode! developed in Task I. Another problem was that

information for using the worksheets was documented under three separate covers:

[

3 " the metric questions themselves on worksheets, a set of explanations for understanding
25 metric questions, and a set of tables containing formulas for relating raw data entered
- q 8 24

& on the worksheets.

3

t. Goals for revising the worksheets included: consistency and clarity of metric
[4 questions and terminology, compatibility with DOD-STD-SDS phases and software
t. terminology, standalone worksheets that required no reference material for answering
- questions, and consistency with the Software Evaluation Reports proposed as part of
!

r" the STARS reasurement DIDs and being prepared by Dynamics Research Corporation
r_f"_.-.

b

> 1-7

.

)

| .

”
o T .
o ..

PN I S I BRI B S I SISy JAR. S SEP R SP P - el PR SRS G U S USRUIT I WSS S VY

o L Y SN e gt gl e B SN R I (e L Al el Jm e g el wegt pud el s il Al Sl A

SYSTEM ACOUISITION PHASES:

DL MONSTRATION AND P
| VALIDATION | FULL SCALE DEVELOPMENT

Quality Metrics - Software Lite Cycle Moadel

SOR SR POR cor TRR FCAPCARQR
v v
f—mm e ————
TS TEMAOF TWARE
lagdumerents anacrss |
b oo o oo o e om am
T
K‘Al VS'{‘
PRELIMINARY
DESIGN

DETAILED
DESIGN

CODING AND
UNIT TESTING

l CSCINTEGRATION I

AND TESTING

CSCI-LEVEL
TESTING

nifiiation
-l

L}
L S

Quatty Metrics - Specitication

_———— AV v

Quanty Metrics - Monitoring

-
\

K
K
K]
K]
K]
K1
K)
’

Figure 1.5-2 Quality Metrics Technology - Life-Cycle Model

|
<
<
- 1o
{
—

O S S 2 R TR e 4 Pl it et At “Aai il MRS ‘Aol S YA A i i RS 2% AN 1 Sa i Y Y S i Ml e A AL A e A L AN A AL S S S

(DRC). BAC and DRC cooperated in defining and clarifying phases, terminology, and
wording of metric questions; explanatory material and examples were included with :
questions. The BAC format for metric questions included formulas for relating raw -

data. All goals in revising the worksheets were achieved. s

Factor scoresheets were created for evaluating metric data; i.e., translating !
worksheet data into scores for metric elements, metrics, criteria, and factors.
Detailed results are reported in Section 3.0. Factor definitions, interrelationships, and

attribute relationships were used throughout procedural steps in the methodology (Task

3).

Task 3, Develop Methodology. The methodology from the most recent RADC quality

measurement contract (described in RADC-TR-83-175) was used as a baseline. This

baseline was extensively revised and enhanced. The specification process was

refocused to enable definition of software quality factor requirements for system and - <‘

software-unique functions at the system level and to enable allocation of quality

requirements to individual computer software configuration items (CSCI) supporting

those functions. Trade study techniques and procedural steps were developed to aid in: -_ "“,'.
, choosing a set of quality factors, choosing quality-level goals for each factor, revising - - ﬂ
iF goals based on beneficial and adverse relationships among fa=tors chosen, revising '_':
tj-‘_::- goals based on projected costs for achieving a quality-level goal over the software life 1
:;’ cycle, specifying software quality factor requirements in the system requirements - :f;::‘
- specification, and assessing compliance with those requirements using quality D
[evaluation scores. An example for an airborne radar system is threaded throughout - !
L the procedures and techniques. S
f. Techniques and procedures for evaluating the quality level of system and software . “
F—’ products were revised and expanded to include using the new metric worksheets for __}
data collection, the new factor scoresheets in data evaluation, and a new software TET{::
r quality evaluation report for reporting data collection and evaluation results. ,‘_ ,-h:<
. Features are reported in Section 4.0. Procedural steps for the methodology were ' L
") documented in developing the guidebooks (Task 5). ”‘""j
- g
- Task 4, Develop Validation Plan. We prepared a validation plan, which proposes to
‘. apply the new methodology to one or more projects, beginning with system and
k -
' 1-9 o
I -

[Tooo- - . . . s . . MR S -t T . .
‘- .) R . . tor L .)) N A T -t SR) «
- . - . ’ . . ‘." : .'..' PR Re
. -t Ce . M L. o Ce s oo T "t " . et e N *
', - . " ' N - PN N Tos L RO . R
PR T -0, T . . PR AR Y - . . AR L)
LIS B =~ PP S IR, P S . e . LU SO WO . WA WA WD . UL S WP WP WS TR WP WP WY SR L DR

RS auan T T T T T rrwrrryye——r
Pertarmaice
and Design [System/System Segment ufe-Cycia Phases
Quainy Meuics Technelogy Requirements Spectication e A
SOR SSR PDR CDR TRR PCA
omare N\ v v v v v
Sottwaere Quanty Speuty Suttware Quaiity
Spevtation Quairty Requitements
Gui’;"—)—.—”—‘ Requrrements and C.rals
: 4
. e Methodulogy H]
' . Procedures :]]
N . Trade Studies H]
. H \ SoMware Guanty Compliance Problems
——] Framework Elements \ >
L : :
N . Factors H
| . Cr e '.
. e Metrs . *
. . Waorksheets .
' '
E : :;:'r':::;:v: E Lite-Cycie Products
) .
. .
.
Sottware uarty Eraate (Perioaic Eva uaton gt thcrementar Proguct Release) Specticatiuns Source
Evaruation Achieved < Documents Coce
Cuidebonk Quenty
T
I
Figure 1.5-3 Software Quality Measurement Methodology
v ~
.-" " -.' 'y .L.._'. MY

A L S B S T A v A= et Dl S e i o gy 4
- T A . D . P -~ g -

software requirements analysis. A basis for rating the success of the validation effort
was outlined. A set of records to be maintained during validation was identified to aid

in interpreting validation results. The validation plan is described in Section 5.0. -

Task 5, Develop Guidebook. We developed two guidebooks to support the methodology
(see Fig. 1.5-3): Software Quality Specification Guidebook and Software Quality
Evaluation Guidebook. The specification guidebook provides procedures and - i

techniques to aid the software acquisition manager in identifying the specifying
software quality factor requirements and in assessing compliance with those
requirements. The evaluation guidebook provides procedures and techniques to enable
data collection and analysis personnel to apply quality metrics to software products
and to evaluate product quality levels. Both guidebooks describe the role of quality
metrics within software acquisition and describe all framework elements. The
Software Quality Specification Guidebook is Volume II; The Software Quality

Evaluation Guidebook is Volume II.

Task 6, Recommend Revisions. We reviewed documentation used in command and
control applications by software acquisition managers. Recommendations were
provided for revising selected regulations, standards, DIDs, and guidebooks. Results

are reported in Section 6.0.

1.6 CONCLUSIONS

The work performed under this contract is part of an evolving technological trend to
provide tools for a more scientific approach to the process of software acquisition
management and to the discipline of software engineering. There is an awareness that

certain software characteristics influence the quality level and cost associated with a

software product. For example, modular and well-commented code is easier to
o maintain and to reuse. Until now, there has been no organized approach for

identifying the many significant variables contributing to low software quality.

; The software quality model (Fig. 1.3-1) and software quality factors, criteria, and
metrics provide an organized view of different aspects of software quality and of
significant software characteristics that contribute to those qualities. Other views of

L software quality aspects are possible; however, the view presented here, coupled with

1-11

o

- . ® T B . W Y 0w 7 7 o7
WAL WL LT RT R T e ™ a® v T B e T . ..

0" par b 2aur ek it el sl A

.

A i S e e

the methodology, procedural steps, and mechanisms for collecting and analyzing
metric data, provide a wholistic technology for dealing with software quality
problems. The software acquisition manager is provided with a powerful tool for
communicating quality needs of the user, application, and system; the development
contractor is provided a set of quality goals to aid in parameterizing requirements and
in making design decisions; both the acquisition manager and the development
contractor receive periodic feedback indicating achieved quality levels throughout the
development process—providing better management visibility and enabling timely

decision making.

L e U RSP

AR o0 G EE S

3

s
.

T,

r;._. T R "Zafi gk Bl (ot Sagi nats S 4 Ao aeng - A m. oy R ey

WIEZL 8 WA

2.0 ROLE OF QUALITY METRICS IN THE
SOFTWARE ACQUISITION PROCESS

This section summarizes results of Task 1, Develop and Document Approach.
Information on task results were orginally released as interim technical report |
(CDRL AQ02) in December, 1982. Task results were updated with new information

during the contract period.

This section examines elements of Air Force system acquisition and software
acquisition processes, describes the process used for specifying and monitoring quality
levels, and discusses the role of quality metrics (QM) technology in the Air Force
software acquisition management process. Considerations include how QM technology
can be integrated into the Air Force software acquisition process and how existing

rmechanisms within the acquisition process can be used to implement QM technology.

Conclusions are that QM technology could be integrated into the Air Force software
acquisition process with minimum impact and that existing mechanisms within the
acquisition process could be augmented to implement QM technology. Specifically, to
specify quality levels and other QM requirements, it is recommended that System
Program Office (SPO) software engineering interface with the using command, Air
Force Logistics Command (AFLC), and Product Division Software Quality Assurance
(QA) organization. And then to monitor the quality levels achieved, it is recommended
that one of several groups who already perform a monitoring function (SPO
Engineering, Product Division Software QA, Air Force Plant Representative Office
(AFPRO), or an independent verification and validation (IV&V) contractor) be tasked
with gathering and evaluating metric data. The Data and Analysis Center for

Software (DACS) at Rome is recommended as a central repository for metric data.

Recommendations include near-term and long-~term activities for implementing QM
technology. Near-term activities include changing regulations, standards, and DIDs,
selecting trial programs for implementing QM technology, and conducting classes for
education and training in QM technology. Recommended long-term activities include
selecting and validating metrics appropriate to each product division, establishing an
historical data base for QM data, automating portions of QM data collection and

analysis tasks, and developing QM analysis tools.

2-1

R L L. e e e e,

-

_‘J‘.A_AJ

D e Nl T Y A-S A Y R Aad CIMEY i A MM Sl Ui Madi i e A I A0 A 4 B B IR A A AP A e S S PSS
P-: .-
L -
p
-
i (Secretary of Defense Decision Points)
MiSSION MILESTONE | MILESTONE 1 MILESTONE it
p— NEED
. COMNCEPY PROGRAM PRODUCTION &
) - DETERMINATION SELECTION GO-AHEAD DEPLOYMENT
b
S CONCEPT DEMONSTRATION FULL SCALE PRODUCTION!
o EXPLORAT ON AND VALIDATION DEVELOPMENT DEPLOYMENT
b L
o J
(Life Cycle Phases)

Figure 2.1-1 System Acquisition Life-Cycle Phases and Decision Points

RS A R o RS i SN o RS i A i S A it R ™ s LRl i ol i S L i s o hsbe g o

Advantages and disadvantages of using QM technology in software acquistion
management and of integrating QM technology into the software acquisition
management process are also discussed. Potential benefits include a higher quality
end product, better management visibility and control, greater emphasis on quality
throughout the life cycle, and life-cycle cost savings. Potential problem areas include
maintaining a current QM technology baseline, subjective judgement in scoring some

metrics, and lack of manpower for implementing QM technology.

2.1 SOFTWARE ACQUISITION PROCESS

The following sections describe selected concepts associated with Air Force software

acquisition management, including system acquisition life cycle, software development
cycle, lifecycle relationships, software acquisition management, verification and
validation (V&V), and quality assurance (QA). Concepts introduced here provide a
basis for discussions of QM technology integration and implementation in the ,-_ﬁ
acquisition process in later sections. The system acquisition life cycle and software ’“ “j‘
development cycle are fully defined in DODD 5000.1 and DOD-STD-SDS and are only R
summarized here. This section is not intended to describe all activities of each life-
cycle phase but to establish the background for discussion of the role of QM -l’—."i
technology. !;.- 4
o
2.1.1 System Acquisition Life Cycle e
The systein acquisition life cycle defined in DOD-STD-SDS consists of four phases: L‘"“';.
concept exploration, demonstration and validation, full-scale development (FSD), and j'"-j":
production and deployment. Four major decision points are associated with these g
phases as shown in Figure 2.1-1 and as defined in DODD 5000.1 (Major System SR

Acquisition). These points are mission need determination; concept selection,
milestone I; program go-ahead, milestone Il; and production and deployment, milestone
[ll. The Secretary of Defense, advised by the Defense Acquisition Executive (DAE),

decides at these points whether to continue the program and proceed to the next phase

or to terminate the program. The system acquisition life cycle applies to the whole

system, not the individual parts.

e e - . S -

- - - - ~ .
“
- - et . - . - . " - N B ‘. " T - - N .
N ST . - - - - N « - LA .t - « - YN o® et - T P vt e " . .
. Lt RPN PREIPAS . S Vo, e e P O e e PR - LI I
A PR AL L L . R) TR S iyl | T N = - . e P y
PR A L WU v PV O 0, ST L Y PR A Dy s U, VD U Iy W W Ty S Wi S Wty YU, "D, Wiy TP TN

PR R RC AR B i Ll | Rl dhart iy, Pea il o4 - et alish ek o i gl B g dien it i A - sod el A h - Nalan b el SaA .- st
SSR
SOFTWARE
REQUIREMENTS
ANALYSIS
PDR
PRELIMINARY
DESIGN
COR
<7
DETAILED
DESIGN

CODING AND
UNIT TESTING

CSCINTEGRATION
AND TESTING

TRR

FCAPCA

CSCH-LEVEL
TESTING

Figure 2.1-

Software Development Cycle

LR

-
MM

RASE e

—

ndB s Jauh aue

N -

~

L e i iGN e, o
- .

Concept exploration is the initial planning phase, during which the role of and plans
for using computer resources in the system are explored. During demonstration and
validation, translating operational requirements into functional, interface, and
performance requirements is completed; and requirements for each hardware and
software configuration item are defined. During FSD, the system is designed, built,
tested, and evaluated. These initial three phases should result in a system meeting
specified requirements. Production and deployment includes production (if applicable)
and delivery and includes all activities involved in supporting the system until it is

retired.
2.1.2 Software Development Cycle

The software development cycle, as defined in DOD-STD-SDS, consists of six phases:
software requirements analysis, preliminary design, detailed design, coding and unit
testing, computer software component (CSC) integration and testing, and computer
software configuration item (CSCI) level testing (see Fig. 2.1-2). This cycle, however,
is not standardized and there are many variations throughout the industry. Although

names and breakdowns vary, the same process is generally followed.

All software requirements are specified during software requirements analysis. The
authenticated software requirements specification (signed off by both the customer
and contractor) forms the baseline for preliminary design. During preliminary design,
a modular, top-level design is developed from the software requirements. During
detailed design, the top-level design is refined to successively lower levels until
individual units, which perform single, nondivisible functions, are defined. During
coding and unit testing, the designer translates the design approach into code and
executes verification tests. During CSC integration and testing, code units are
integrated and informal tests are performed on aggregates of integrated units. This
cycle concludes with CSCl-level testing, during which formal tests are conducted on

the software.

As with the system acquisition life cycle, the software development cycle has decision
points associated with most phases. These decision points (shown in Fig. 2.1-2) are
the: software specification review (SSR), preliminary design review (PDR), critical

design review (CDR), test readiness review (TRR), and functional configuration audit

- ., . . s . . -, . . B - .. N . . - - -~ L N S - .
ST W S S B S e} Y, S P Yy PSRRI S S0 WL I W S . W SIS TP oW JPUS AU S AT G 2 S LT 2 Analruar’arie oAl

A R TR B it S SR il JF L S e o & o LA SR S STAE M A i A e N S Pl v Mt St e A on Sl St At eis A en B dat Aok Sk A Bad b uci

AN I I 2d o

b

-
L
» .4
o
- ~d

.
- -
P

- . d
» o
S
[

‘
Aol

{
Lo
Lo

i

STSTEMALLNSITION LIFE CYCQLE
L
conrEpT DEMONSTRATION PRODUCIION <
AND FULL-SCALE DEVELOPMEN! AND 4
ExPLORATION VALIDATION DEPLOYMENT]
v v 4
| | y
A \
Cd - < N
- \

OPERATIONAL PR \ E

SOFTWARE PR \ .
DEVELOPMENT P \ M R
CveLE - $sR \ “ 4

L v \ “ " .
\ s
SOFTWARE \ d
REQUIKEMENTS \ - .4
ANALYSIS POR \\ - a
\ N
PRELIMINARY AY T
\ .
DESIGN \
(DR
\vg \
AY
DETAILED \
A Y

DESIGN \ R

\ .
\ . - 3
CUDING AND \ [
\ —— e

UNITTESTING \ -
\
\
CSCINTEGRATION \
AND TESTING }
U
TRR FCAPCA
CSCt-LEVEL
TESTING

Figure 2.1-3 Life-Cycle Relationship between the System and the Operational Software RS

P Sl P e T B oah o Ml ML e R TBl™ P e St e S R S S5 ol Al Rl Sl JAndh, Rabt Nl vind «aulh Anul Senl Jink Sedh Sl v b e P S i

N o SR
3
)

T

Y
.

(FCA)/physical configuration audit (PCA). These decision points are quite different
from decision points associated with the system acquisition life cycle. At these
decision points it is not determined whether to continue or terminate the program;
rather, progress up to that point is reviewed and it is decided if the developer has

completed the current phase and is ready to proceed into the next phase.
2.1.3 Life-Cycle Relationships

Each CSCI to be developed goes through the entire software development cycle. The
software development cycle can be completed in a single phase of the system
acquisition life cycle or can overlap several phases. For example, software could be
developed for risk-reduction analysis during concept exploration or demonstration and
validation. This software could be used to validate the feasibility of an algorithm or
to compare alternative approaches. This type of software may not be in the language
required for the operational software and may not be targeted for the same computer.
However, it still goes through the entire development cycle. The same is true for test
software developed to aid in validation of the operational software. Operational
software development may overlap several system life-cycle phases; requirements
definition for operational software begins early in the system acquisition life cycle,
although operational software is not fully developed until FSD. In this guidebook
operational software quality is the primary concern; therefore, the relationship of the
operational software development cycle to the system acquisition life cycle will be

examined.

There is a specific relationship between the operational software development cycle
and the system acquisition life cycle in most system procurements (see Fig. 2.1-3).
The software requirements analysis phase overlaps part of the demonstration and
validation phase and the beginning of FSD. The remaining operational software
development phases occur during FSDj; i.e., preliminary design through CSCI-level
testing of the software development cycle. This relationship is assumed for the

remaining discussions.

T T—————" DA SaC S) T

-

2
-
»

2.1.4 >Software Acquisition Management

.- .v ,
et . 'll L;
o

"o
.ll

C
s s

The software acquisition manager has various responsibilities during the software

o

it
1] \ .
L

development cycle. This section focuses on two general functions of software
acquisition management: (1) specifying requirements and (2) monitoring development
to ensure satisfying the requirements. To describe all that this manager does during]

the software life cycle is beyond the scope of this guidebook.

Specification of software requirements begins with development of the system
specification and continues until all requirements for each CSCI have been specified

during software requirements analysis in the software development cycle. These

4

9

7

-]

requirements include more than traditional functional and performance requirements. . f
: They also include interface, human engineering, language, data base, delivery,

self-test, anomaly management, resource reserves, and quality requirements. Many]

decisions are made to specify these requirements. g

The software acquisition manager becomes involved at the system level, when system

functional tasks are allocated to software or to hardware. Allocation decisions may be

based on trade studies, system engineering, and risk analyses. Once the allocation of]

functional tasks is completed, specific software requirements can be identified. The _' 4

result is a set of software capabilities, performance levels, and design constraints.

Identification of these specific requirements usually involves decisions supported by

T e
!

I

-

trade studies. Such trade studies may include, for example, higher order language

p (HOL) versus assembly language, distributed processing versus centralized processing, , ,
growth capability reauired for timing and sizing, the degree of human operator g
E,_ interaction required, and efficiency versus maintainability. These software trade ~:
o studies consider life-cycle costs, risk, schedule, capabilities, software performance, :
;, and final product quality. These activities are concluded when the SPO authenticates ___;‘
_,' : (signs off) the software requirements specifications for each CSCI. B
4 SR
:"_' Once software requirements are specified, the acquisition manager begins monitoring ::}"‘Ti‘_‘
. software development. Monitoring continues throughout preliminary design, detailed __l ;‘
E design, coding and unit testing, CSC integration and testing, and CSClI-level testing

3 and may continue into the system integration and testing that follows. The primary

; concern of monitoring, other than schedule or cost, is whether the software satisfies

g .

g 2-8 ;

g |

o

LIS Ty
- um .

Ny e et “ B . PR, B N - . Ce .
. UL R A . et P . B L. PN . . - . oo
0, TR R R I I P PP I G I T A TP WA AP AL R PO TP DR O PO P S Y . NP WS W 1 e cdomnoeadimsded B ot Acdnaiid

the requirements. Monitoring provides the acquisition manager with visibility of the
evolving product in order to track technical progress and quality. This visibility is
achieved through various reviews, audits, documentation, and products required
periodically throughout development. Established criteria and measurement methods
for each review and audit and for all documentation and products are necessary for
tracking progress. Tracking enables the manager to identify problems early enough to

correct them. Two activities providing feedback are V&V and QA.

2.1.5 Verification and Validation

The purpose of V&V is to provide the Air Force with systematic assurance that
acquired software will perform missions in accordance with requirements. The terms
verification and validation are often used interchangeably, but in the software
development cycle distinct concepts are associated with each. The meaning of these

terms as used here is as follows:

Verification is the iterative process of determining whether the product of each
software development phase fulfills requirements levied by the previous phase. That
is, (1) software requirements are verified to ensure that they fulfill system-level
requirements, (2) the software design is verified to ensure that it satisfies require-
ments in the software requirements specification, and (3) code is verified to ensure
that it complies with the top-level design and detailed design documents. This process
does not consider whether system-level software requirements are correct or whether

they actually satisfy users needs.

Validation is a continuing process to ensure that requirements at various levels are
correct, thus satisfying mission requirements defined by the using command.
Sometimes validation is considered to be the system-level test activity that validates
the CSCI against software and system requirements. In reality, it is much more than
that. Validation, like verification, continues throughout the software life cycle. For
example, when software requirements are allocated and derived, a system-level
requirement could be found to be vague or incorrect; or during design, it could be
discovered that a software requirement is infeasible or ambiguous. Feedback to the

manager enables corrective action to be taken early in development, thereby reducing

risk and cost.

hodnindi St

MISSION
REQUIREMENTS
A Vahdation
<
v A A z
SYSTEM REQUIREMENTS DESIGN CODE
(SOFTWARE N {TOP LEVEL DESIGN AND - (CODE. DATA. AND/OR
SPECIFI- y REQUIREMENTS Yy OETAILED DESIGN A TEST PROCEDURES
SPECIFICATION) DOCUMENTS) AND RESULTS)
CATION
REQUIREMENTS DESIGN SOFTWARE
VERIFICATION VERIFICATION VERIFICATION

g

Figure 2.1-4 Relationship of Software Development and V&V

a4’ s

' e
Aedendiod ok iadomd i,

SOFTWARE
PRODUCT

LA S AL A" B e e AU SEvIC M sl SO i ki DA A AR A T ALAAACH S A A iaCaiiet S SR S S Sl S S, AN I A
AT e P

(L

v
The concept of V&V and its relationship to software development products is shown in 4
Figure 2.1-4. V&V provides feedback to the software acquisition manager concerning _"-:Zj-}_j:;'
software technical performance. The term IV&YV is used when V&V is done for the Air = j
Force by a contractor other than either the prime contractor or the subcontractor who -
is developing the software. .‘;
2.1.6 Quality Assurance .————-"
R j
According to MIL-S-52779A, the purpose of software QA is to ensure that the R
software delivered under a contract complies with contract requirements. This type - .
of QA program will not ensure development of a high-quality software product unless E - ‘fj‘
software quality attributes are specified in measurable terms as part of the contract. IR
The objective of current QA programs is to provide feedback to the acquisition "
manager concerning various aspects of the development process. QA is similar to » i
V&V, the major difference being that V&V provides technical feedback on software 6 N
products at only a few points in time, whereas QA provides feedback on a wide range : j
} of development activities. But contractual software quality is not normally defined in 'f-.‘.:
quantitative terms. The current goal is simply to achieve better quality through s .'-j.f
controlling the development processes. AR,
L '
Section 2.3 explores how QM technology can help to expand the scope of QA programs ﬁ-j‘:
to include specification of software quality requirements and measurement of - :
achieved quality levels for software development products. The following paragraphs r‘-j
& explain the current scope of QA programs. _ V":!
3]
E' . At one time, software QA was equated to testing. As an illustration, Section 4 of the : *
?. CPCI development specification (according to MIL-STD-483) was called Quality l ' J
F_': Assurance Provisions. However, as with other products, it was learned that quality __:".“"_:Z':'J
: cannot be tested into software. Because of cost and schedule impacts, it is usually " q
- too late to make changes when quality problems are found during testing. Quality can S
F‘ be affected by how code is written and how software is designed. 1f a software quality ’" “"‘;f:
i; problem is found during testing, it is usually very expensive to redesign and to change “.:
t» the code. Quality should be planned, designed, and built into software. This .:fj:
¢) realization has lead to the current life—cycle-oriented QA approach. This approach p
:'.. focuses attention on all phases of the software development cycle; and software QA) . !
E‘- |
:

N
-

l - - N . St . B J
. . . oLt . C e e et Camgte S [DR - . S :
PR L SN ¥ SR T U UY S0 S SR S I JUI S, 32 - Y O ST TN IS WA WOy A eV YoV NP SN SO L. WAL WIP N S PVR SUPC ST TPRL IFQEIPRY SR, SRR

o LA v st s Ak ik et S BB e e S A L S e LA S and Juci et vl ani- atuinAC M- L A S e e i A A bl

._,,-
R
i

(Anytime
During the
Development Process) QA Function
Az
lJ IS THE SOFTWARE FEEDBACK TO
SOFTWARE ACTIVITY OR PRODUCT IN ACQUISITION
ACTIVITY p.| ACCORDANCE WITH MiL- R MANAGER
OR STDs, PLANS (SDP, TEST
PRODUCT PLAN, SCM PLAN, SQA
PLAN,ETC.) OR THE CDRL?

Figure 2.1-5 Software QA Function

be aun i sma gih amn o g 4

|
t
i

s =T . " S

- . - L. et m e e PRER} o
PSP M PO R UPE WAL AP, WO WG Uy, S W | PP WU L T VA N ST Wl WA GIY N S 4

- — D

now includes many activities, such as ensuring that software is being developed in
accordance with plans, that requirements are traceable, that design and code are
easily and economically supportable, and that testing is accomplished as planned.

These activities provide necessary feedback to the software acquisition manager.

Software quality assurance programs, however, are primarily administrative rather
than technical. For example, the QA organization does not trace requirements but
ensures that Engineering has developed traceability matrices. The QA function is _
essentially a checkoff function applied during the software development process; i.e., . ﬁzl‘.f.'
QA ensures that everything is done as planned. Software QA continues throughout the '

software development cycle (see Fig. 2.1-5).

Software QA is an evolving discipline. Experience has provided insight into which
development practices tend to produce a higher quality software product, and the QA

program ensures that selected practices are used by checking the development

process. The next step to improving quality is to quantitatively specify quality
requirements and to measure and control the quality of the software product as it
evolves. linplementing QM technology in the Air Force acquisition process will
provide the added dimension of quantitative measures to addressing quality concerns

for software products.

2.2 QUALITY METRICS

{
3
k
4
The purpose of QM technolog; is to enable the software acquisition manager to specify —_—_-.--.-'
a desired software quality level for each quality factor of importance to the ?
application and to quantitatively measure the achieved levels of quality at specific]
points during develcpment. These periodic measurements enable an assessment of i
current status and a prediction of quality level for the final product. Some problems
with delivered soitware products have been that these products are (to varying ;
degrees) unreliable, incorrect, and/or unmaintainable. QM technology addresses these
and other quality-oriented problems by providing a means to specify quality }
requirements, to quantitatively measure quality achieved during development, and to -

predict a quality level for the final product.

2-13

FOlh S L fes AE S S At Sl d A St el MMICRSME ARSI AR

QM technology measures the degree of software quality, not the level of software
technical performance; e.g., how easy is it to maintain the software, not how accurate
is the navigation algorithm. However, the process of specifying and measuring quality
levels is analogous to the process of specifying and measuring technical performance.
Both processes begin with similar activities: system needs are assessed, trades are
performed (involving resources and levels of performance or levels of quality), and
requirements are specified. Subsequent phases involve evaluations of how well these -

requirements are being satisfied.

Technical performance levels are traditionally evaluated by modeling in early 1 .'_:ﬁ:‘
development stages and by testing in later development stages. Quality has '
traditionally been evaluated by such methods as reviews, walk throughs, and audits.
This type of quality evaluation ensures that, for example, designs are traceable to
requirements, configuration management is adequate, and standards and plans are

being followed. However, it does not address such quality issues as software

Abtii b

reliability, correctness, and maintainability. QM technology enables a quantitative
assessment of these types of quality factors at different stages of development,
thereby ensuring that specified quality levels are being satisfied in a manner similar to

per formance evaluation by testing.

Sl bl ot e

Figure 1.5-2 depicts the software life-cycle model used in QM technology. The

software model is shown in typical relationship to two system acquisition phases.

Eight development states are shown with typical review and audit points. There are
two system-level activities involving software: system/software requirements
analysis and system integration and testing (both shown in dashed boxes). (Operational
testing and evaluation is the last FSD phase but is not shown as it is not normally
performed by the development contractor.) There are six software development

phases: software requirements analysis, preliminary design, detailed design, coding

and unit testing, CSC integration and testing, and CSCl-level testing. These phases
refer to the sarme development activities as are described in Section 2.1. This division
a of activities was chosen because at the end of each activity shown in Figure 1.5-2 a
1 configuration baseline generally is established, and software products (specifications,
documents, code) describing that baseline are available for review or audit and the
= application of quality measurements. Also illustrated in Figure 1.5-2 are the two

[points at which quality requirements are specified and the eight points at which

R e

v — A 4 v e Ban s v 2 A Sl M Al 2 Y M M

quality levels are measured (monitored). These measurement points generally

correspond to the review or audit points for configuration baselines.
2.2.1 Framework

A hierarchical model for quality has been established (see Fig. 1.3-1). User-oriented
factors (e.g., reliability, correctness, maintainability) are at the top level, software-
oriented criteria are at the next level, and metrics—quantitative measures of

characteristics—are at the lowest level.

This model is flexible in that it indicates a general relationship between each factor
and its attributes. This permits updating of individual elements to reflect technology
advances without affecting the model itself. For example, as new user concerns
evolve, new factors can be added at the top level; and as software tethnology evolves,
criteria and metrics can be added, deleted, or modified as necessary. There are
currently 13 quality factors, 29 criteria, 73 metrics, and more than 300 metric
elements (distinct parts of a metric). Table 2.2-1 shows the 13 quality factors and
describes the primary user concern for choosing each factor. Quality factors and user
concerns are categorized by three types of acquisition concerns with respect to the
software: (1) product performance—~how well does the software function in its normal
environment; (2) product design—how valid (appropriate) is the design with respect to
requirements, verification, and maintenance; and (3) product adaptation—how easy is
it to adapt the software for use beyond its original intended use (e.g., for new

requirements, a new application, or a different environment).

Figures 2.2-1, 2.2-2, and 2.2-3 show the quality factors, criteria, and metrics in the
hierarchical relationships of the software quality model. The metrics are identified by
acronym only in the figures. These and other framework elements for QM technology
are described in detail in Section 3.0. The following sections describe some aspects

involved in specifying and monitoring software quality using QM technology.
2.2.2 Quality Specification

When determining and specifying software quality requirements, system needs are

assessed from a quality perspective; the desired quality factors, associated criteria,

] .
et .
. PP
e
e . L o
. s e e - .
CL e R
Lot e .. R
. . . \ L .
i b b teta e tata s ladm A L

——ae o

e d b

L T
o
SR PI

2

Table 2.2-1 Quality Concerns

Acquisition Concern

User Concern

Quality Factor

’ n
IR

Sy
RS
. LN
-
i ;
y
P
R

HOW WELL DOES IT UTILIZE A RESOURCE? EFFICIENCY
HOW SECURE IS IT? INTEGRITY
E .
PERFORMANCE WHAT CONFIDENCE CAN BE PLACED IN RELIABILITY
HOW WELLDOES 1T | WHAT CONFIDS
FUNCTION? '
HOW WELL WILL IT PERFORM UNDER SURVIVABILITY
ADVERSE CONDITIONS?
HOW EASY IS IT TO USE? USABILITY
HOW WELL DOES IT CONFORM TO THE CORRECTNESS
2
DESIGN. - REQUIREMENTS?
HOWVALIDISTHE | |5\ EASY 1S 1T TO REPAIR? MAINTAINABILITY
DESIGN?
HOW EASY IS IT TO VERIFY ITS VERIFIABILITY
PERFORMANCE?
HOW EASY IS IT TO EXPAND OR UPGRADE EXPANDABILITY
ITS CAPABILITY OR PERFORMANCE?
b
ADAPTATION - HOW EASY IS IT TO CHANGE FLEXIBILITY
HOWADATTABLE'S | How EASY 1S 1T TO INTERFACE WITH INTEROPERABILITY

ANOTHER SYSTEM?
HOW EASY IS IT TO TRANSPORT?

HOW EASY IS IT TO CONVERT FOR USE IN
ANOTHER APPLICATION?

PORTABILITY

REUSABILITY

9 — 7 vy L ar B e LaRa A Al o aoRdL ot
ot Aua AN A en Mea A4 aen A GUunIlie R oy - i - AeMiie 0 e SalinS Ll al Sa st Sl st A e il B ~ < 4

EFFICIENCY
_

EFFECTIVENESS - EFFECTIVENESS - EFFECTIVENESS -
COMMUNICATION PROCESSING STORAGE
L_EC.‘I tEPvl LESI

EP 2
INTEGRITY

4 [systemaccessisuTY |
: E S5 1

{ $5 2

g

q ‘ [ACCURACY 1 [vANOMALY MANAGEMENT—I Lsmpuc:w J
l_ AC 1 _ AM St
t: L AM.2 Si2
2 L AM.3 si3
h ___ AML4 sS4
g L AMS SIS
| AM.6 SI6
L_ AMm.7

e, A

SURVIVABILITY

L ANOMALY MANAGEMENT AUTONOMY DISTRIBUTEDNESS MODULARITY RECONFIGURABILITY
- .

4 | - AM.1 EAU‘I [__Dll kMOI L.RE.'I
4 L AM.2 AU 2 MO.2

} . L_ AM.3

[.‘ L— AM 4

o AV USABILITY

e L AM6

- a7

b ™~

K

* Figure 2.2-1 Performance Factor Attributes

E)

L 2-17

b

—r
-

1]

. '

' PR
.

r e .
¥
e

B

'l

" .

Y

[

Je

b

b

3
B
r

h

{ ,

,?

L

L

,D

ke

Lo
<.

X .

B

dan b o o e -l

.
PI A SRS

COMPLETENESS

E__ CP.1

St Mt e it S S e/ Jimge Bhat Bkt dhedh 4

CORRECTNESS

l

CONSISTENCY

t csa
.2

MAINTAINABILITY

TRACEABILITY

l__ TCAH

CONSISTENCY

MODULARITY

SELF-DESCRIPTIVENESS

SIMPLICITY

VISIBILITY

t s
5.2

t MO 1
MO.2

SO
SD.2
SD3

VERIFIABILITY

Y
- S1.2
L SL3
— Si4
SLS
S1.6

Vs
Vs 2
Vvs3

MODULARITY

SELF-DESCRIPTIVENESS SIMPLICITY

VISIBILITY

-

SO
$D.2
sD.3

b SIA
L S1.2
— SIL.3
L SI4
L SIS
L— S1.6

Figure 2.2-2 Design Factor Attributes

2-18

AN
VSs.2
VSs.3

a, = e . .
PR . .o - . St s
L - - - - LS - B *
. - . - . .
et .« o~ - - ..'\-‘ R T
Lo, L) Tt WAL L. PO P Sad. LU R G PG SRLPTU.,. W, .

Y RPN SRS AT I

,
.o

v

e

|
|

oo [
.. ol
{
L
e l
AP SPEFIDA

e o Ml el M 2 o i A ved e aak gt Da M ool s o sl oo tind o Seb bl Aub ik eat e A e SO N ASAS
| ure gl ard abatlt S A A AC i R - Pl B
A
©
-
o
'
(2]
0
L EXPANDABILITY
B
" . SELF-
- AUGMENTABILITY GENERALITY MOOULARITY DESCRIPTIVENESS SIMPLICITY VIRTYALITY
- h i
F ari GE 1 tMO! SO 1 St L—'wn
aT2 GE 2 MO 2 s02 si2
ar3 $D 3 si3
ara sia
HE
FLEXIBILITY Si6

SELF-
GENERALITY FMODULARITY ‘ DESCRIPTIVENESS SIMPLICITY
h l GE I MOt SO 1 S

GE 2 MO 2 T 502 $12
[03 SI3
sia
HE
1 INTERGPERABILITY 516
¢ l
- FUNCTONAL SYSTEM
s COMMONALITY OVE LP INDEPENDENCE MODULARITY COMPAT BILITY
4]
i [« O 1 Exol E"Mov Ba
4 L2 D2 MO 2 sv2
X L3 sy 3
. sy a
PORTABILITY SYS
. SE.F-
& INDEFENDENCE MODULARITY DESCRPTVENESS

' E‘o' E: MO 1 DY
- 02 MO 2 502
E 501

REUSABLITY

.

P. ; $Y§ I

S AP CATION FUNCT ONAL SEF CLARITY

} NOESENDENCE SCOPE INDEPENDENCE DESCRIPTIVENESS

'

— DOCUMENT : sT1

F" ant ACCESS BILITY s GENZRAL TY o MODULARTY S0 l SIMPLTITY J

x [as? N sD2 .
M ar3 fe . 753 $D 3 P T3
| 0 ¢ ra

) C*¢ = 0. eI o2 52

" FER

STS
503

HE}

tili

L 16
[Figure 2.2-3 Adaptation Factor Attributes

i

l‘_

b

T 2-19

A

e “ . . -
R Lot

e e Th A e e
LIPS APS, WP WP SR W W W S W

v v v MACERd-g
dinh, Sl Sade B A 6 Avh 0 Lt 8 4n ara d w AT B G0 G SAe S e nie T G el thi Sl sl Sa Al S Sl A S S S S S D S0 Sl Sl PEA AR s b S b SIMEL AN

Table 2.2-2 Software Quality Factor Interrelationships

ACQUISITION CONCERN PERFORMANCE DESIGN ADAPTATION
A E IR IS |JUjc |M | VI]E F | PR . |
& FInleE[O|S1ola | EIxXx|[LIN]|O|E .
B QUALITY FIT|L|RI|A{R]I|R|PJ]E]T | R|U)
' FACTOR LJEfr IV |BIRINTLIA|X]E] T]S "
s clelall T eE|T|FIN|[TIR]|A|A s
1 AFFECTED Il | R|B |V |L]C|A I|D 8|0 | B|B it
i E [Al T | ! AlA | p 1] .
: JHISHAM IS LA AN —
v| quauty SRR 1Bl L L+ IA])T j
§ FACTOR vy |1 S| Ity !l jvyly]
: N | SPECIFIED J L3y ! T
5 E T | -
H !
[3) v
3 . N ! '.'. .
L.m P | EFFICIENCY W WV N .=
£ — ‘ o
B £ | nTesairy 7 A\ | ! |
r» V NN - - - .
& m | RELIABILITY VAR R Lo I
. A - '
N
4 : SURVIVABILITY VAV VAN VAV VA
USABILITY V4 ol
o | correcTNESS A VA
S
I | MAINTAINABILITY .
¢ | M N/ |4
N - .
VERIFIABILITY N NN |
EXPANDABILITY | NANA <A ’
A
o | FLEXIBILITY |
D B V4 7
)
1 | INTEROPERABILITY VANV
A
I | PORTABILITY V4
(o}
N | REUSABILITY VA VANV VAN
O\ = POSITIVE EFFECT
7 = NEGATIVE EFFECT
, BLANK = NONE OR APPLICATION
- DEPENDENT
b
.
@
t;--;‘ 2-20
3 . .
4 - . . .
R S O S W S Or AT IS 4 VR S A VTR AT G T S P S N RSO UL UL S VDAY L

TCCT 7T VvVyYTY,
A
- .

T T

et it et eact vl Bt g N sa et G i s A e g PRI I A A S e S vt S v Sk S Cand Stttk MRt s Ty Lt ate

and applicable metrics are selected; and quality-level goals are derived for each
separate quality factor. When assessing system needs, application characteristics
should be considered. For example, if the system will have a long life cycle, emphases
on maintainability, flexibility, portability, and expandability are recommended.
Factor goals define the required quality levels to be achieved for the factor (i.e.,
excellent, good, or average). In general, choosing a higher quality goal will result in
more resources being expended to achieve that level. When deriving factor goals,
interrelationships between factors should be considered because a high quality goal for
one factor may conflict with a high quality goal for another factor. Table 2.2-2 shows
the beneficial and adverse relationships between quality factors; some factors have a
positive relationship and others conflict. For example, specifying a high quality level

for most factors conflicts with specifying a high quality leve! for efficiency.

A typical problem for an embedded software system arises when reliability is of the
utmost importance because of the type of mission to be performed, but efficiency is
also required because of space and weight limitations, and flexibility is needed because
of the variety of missions and/or targets. It is normally infeasible to select and
achieve high quality levels for all three factors. Highly efficient code is usually
tightly written assembly-level code and tends to be not as reliable or as amenable to
changes (flexible) as looser, more structured higher order language code. And code
written to be reliable and flexible tends to be less efficient. Trade studies are needed
to resolve these problems. If some efficiency is sacrificed for reliability, then
performance goals (e.g., for accuracy or range) may be affected. If some flexibility is
sacrificed for efficiency, then the scope of the missions and/or targets may be
reduced. QM technology provides an aid for decision making when selecting quality-
level goals, when determining feasible software requirements, and for allocating
acquisition resources. Several iterations of quality tradeoffs may be required for
choosing reasonable quality goals. Section 4.0 of the specification guidebook (Vol. II)
provides specific techniques for choosing quality factors and includes consideration of

application characteristics and factor interrelationships.

vy e

RS MARA 4

2.2.3 Quality Monitoring

When monitoring software quality, the quality metrics (in the form of questions on
worksheets) are applied to software products (specifications, documents, code) at
different stages of the development cycle, and a quality-level score is calculated for
each factor. The factor score predicts a quality level for the final product. The
points in the development cycle where data gathering and analysis are recommended is
shown in Figure 1.5-2. These points generally correspond to normal reviews and audits
conducted when a configuration baseline has been established (SDR, SSR, PDR, CDR,
TRR, and FCA/PCA). Before each review or audit, the metrics selected for the
project are applied to software products resulting from that phase of development.
This results in a quantitative value for each metric. The metric values are then used
to calculate scores for each criterion, and the criteria scores are used to calculate a

score (predicted quality level) for each factor.

The quality metrics are applied at incremental points during the development phases.
This enables periodic review of progress in meeting quality goal requirements and aids
in pinpointing areas of weakness (and strength) in product quality as the product
evolves. There are two types of metrics—anomaly detecting and predictive. Both are
used in scoring. A low score for predictive metrics indicates that a low score will
probably result for the end product because the design is not considering aspects
important to achieving the desired quality level. For example, if the design has very
little spare storage capacity, the end product will not be highly expandable. A low
score for anomaly-detecting metrics indicates an actual design or code deficiency.
For example, if provisions are not made for immediate indication of an an access
violation, software integrity would be jeopardized. Evaluating low metric scores
provides an opportunity for identifying deficiencies and anomalies during development

when they are more easily corrected.

Worksheets have been devised to help gather metric data. There is a separate
worksheet for each development phase, and each worksheet lists only metrics
applicable to that phase. A more detailed explanation of the worksheets is provided in

Section 3.4.

T

.rva YT T
. LR 7S

2.3 SOFTWARE ACQUISITION USING QUALITY METRICS

Two general functions of the software acquisition manager are described in Section
2.1.8: (1) specifying requirements and (2) monitoring development to ensure that
requirements are being satisfied. Also two general functions associated with QM
technology are described in Sections 2.2.2 and 2.2.3: (1) specifying quality require-
ments and (2) monitoring development to ensure that metric scores are predicting
specified quality goals. When using QM technology, monitoring begins earlier in the
development cycle. The relationship of these functions to the software life cycle is

shown in Figure 2.3-1.

Specifying and monitoring have not usually overlapped. The specification of software
requirements was normally completed before development monitoring began, as shown
in Figure 2.3-1. Metric questions have been devise | to enable evaluation of software
quality reflected in the system specification available at the system design review

(SDR). This moves the start of monitoring forward so that the two functions overlap.

Several organizations normally are involved in performing these two functions.
Although the internal structure of the Air Force product divisions (ESD, ASD, and SD)
may di:" r, the relationship of the SPO to external organizations is basically the same
for each <:vision. Organizations that may be involved in the QM functions and their
recommended relationships are shown in Figure 2.3-2. Organizational relationships are

discussed in the following paragraphs.

Several organizations should be involved in the specification function. The primary
organization responsible for software requirements specification is SPO Software
Engineering. However, SPO software engineers need help from both the using
command and Air Force Logistics Command (AFLC) to fully define software quality
needs. Both organizations have a vested interest in requirements affecting system

operation and support.

The using command is primarily interested in operational requirements and is
especially qualified to contribute to a definition of quality needs for the performance
quality factors (e.g., efficiency, integrity, and reliability). AFLC is primarily

interested in support requirements and is especially qualified to contribute to a

- . N T
R
I

T TN erp—y—y—

. . .
. - . © e T .. e . . PN . - ~
PP S SR N W Vil S oI P P LI . SN .. - PN S AT

"
o
1
5“",'"“"

%

———
®

- St g Ak il i

TR TR TR TN T TR T T TN X

LA Wi

SOR SSR
- (V3

r - - - -
SYSTEMASOF TWARE
| REQUIREMENTS ANALYSIS

i
) SWREQUIREMENTS
ANALYSIS
-

e e e e = - — -

. PREUMINARY
. ° COR
: L DES'GN v
Software : : DElALED
. . DESIGN
De-e‘opmtm< . .
. : CODING AND
Cycle . . UNIT TESTING
. . CSCNTEGRATION
. . AND TESTING
. . TRR feapca
: : CSC1 LEVEL
. . TESTING
Exnting : M TR e -y
. . SYSTERM NTEC HATUN i
Sottware . | AND TESTNG
| |
Acquisition
SPECIFYING MONITORING
Manager
Functions .
(- SPECIFYING :
Sotrware :
. tdentying Quality Factors to Be .
[o10] included .
< L] Determine Required Goals for Each -
Functions N
MONITORING

Gather Data at Review Points
Evatuate Data

Compare to Requirements

Track Progress

Covrect Deficiencies (as Necessary)

Figure 2.3-1 Software Acquisition Quality Metrics

Functions

Fv T D Y e DT, e, R T —— g

using Product
Command afLl Divson QA
(ATUTACSACMAC) {ESD:ASL SOY
X
9
r Vv [20) RADC
3
3
-
‘-' AFPRO
Pr.me Assocate
Sutcontractor(s)
Cortractor Contractons)
Legend
atc = A Training Command AF = At Force ESD = fiectron s System Divs.on
1aC « Tactical A Command AFLC = afLogsties Command ASD = fgrunaot-cal System Dosion
sag ® Stratey Arr (ommand AFPRO = AF Plant Representative Oltce S0 = Space Division
MalC = Mibtary &ir Command $PO = System Program Otfice Qa e Qualty Assurance
VAV e Independent Val.daton and Verfication RADC = Rome Aur Devetopment (enter

Figure 2.3-2 Air Force Acquisition Relationships Involved in Quality Metrics Functions

‘T 2t S Sh an S om o

B/t M0 annii (e e g s ey
PN . el
.. [

)

TY. ¥

v g

o
Al

-
»

Y

LA..O'-‘\

Using

Command AfLC ot - 4
Division Software QA o
’ R!
]
Provide QM support K
rquirements :)
S

Proviae QA operational ver:t

y QM requirements

requirements N contract
A S

SPO
software
engineering

Provide contract software
requirements

Figure 2.3-3

Recommended Responsibilities and Relationships for the QM Specification Function

. . - . NSRS
f 'mr' TR . D U Yoo R o R -~ Y e
J . -, W e e
< “ R i e ta PP O PR S S e S AR Ty L

(i Sadh Bt A N Jal - Ol “Diie —Svtn ey Ste i St - AateCubv Sv Junn 2 T i - T, Dl A A A PR SRR IR M M M M e

definition of quality needs for the design and adaptation quality factors (e.g.,

maintainability, expandability, and portability). With input from these organizations,

SPO Software Engineering can determine the contractual statement of quality
requirements. In addition, the Product Division Software QA organization is normally 1

tasked to ensure that quality requirements are included in the contract. These

responsibilities and relationships for the specification function are shown in Figure
2.3-3,

Several organizations also should be involved in the monitoring function. Among the

4

L

-

{

4

2

first activities are identifying and negotiating with the organization that will collect _— j

and analyze metric data. If that organization is to be another Air Force agency, such "

]

as Air Force Contracts Management Division (AFCMD), then the SPO needs to *
negotiate the effort through a memorandum of agreement. If the organization is to be

an IV&V contractor, then the IV&V contract needs to be negotiated. These e]

negotiations must be completed very early in the program before data collection

starts, and SPO Software Engineering must ensure that necessary support is provided.

Several organizations could collect and analyze data, including SPO Software

Engineering, the Product Division Software QA, the Air Force Plant Representative

Office (AFPRO), and an IV&V contractor. The following criteria were established to

- aid in selecting an organization: technical capability, labor availability, economy, and

of software by people in the organization. Labor availability refers to availability of

E data availability. Technical capability refers to the depth of technical understanding
P
': qualified people to perform this additional task (i.e., currently available or readily

obtainable). Economy refers to the least costly method for the SPO to obtain data.

Data availability refers to the ability to access the most current contractor
: documentation and information. Informal lines of communication greatly influence
L,
1 this factor.
g
S We rated four candidate organizations using these criteria, based on our experience. A
]

. score of | represents the best conditions and a 3 represents the worst for each
criterion. A total unweighted score was determined for each organization, with the

lowest score representing the best choice. The evaluation scores are shown in Table T
[2.3-1]
[.

T YT

T T e T ool oARRC R A i AP N S |

Table 2.3-1 Organizational Evaluation

T C L A E D A S S
E A AV C AV cC U
C P B A 0] T A o M
H A @) | N A | R ™M
CRITERION N B R L O L E A
| | A M A * R
C L B Y B Y
A ! |
L T L L
Y |]
ORGANIZATION T T
Y Y
5PO 2 2 1 2 7
ENGINEERING
PRODUCT DIVISION 3 3 1 3 10
SOFTWARE QA
AFPRO 2 2 1 1 6
V&V 1 1 3 2 7
1 = BEST
2 = MEDIUM
3 = WORST
* Lowest Score is Best (Unweighted)
2-28
_— = — -t oa - s P AT S Wovir ST W 4 I e T R s A B 0 A A W B

- i
PUTIPR NI SR

,1‘
ISR IUTY

-
[
«
'
o
o
4

Several assumptions were made for scoring. The first was that all criteria are
weighted equally; actually, however, technical capability and labor availability may be
overriding factors for selection. For technical capability, it was assumed that Product
Division Software OA groups are unlikely tc be able to obtain people experienced in
both software engineering and QA to perform that job. For economy, it was assumed
that any Air Force person (civilian or military) is a free resource for the SPO.
Otherwise, the SPO must pay for IV&V contractor services. Data availability scores
include the assumption that the IV&V contractor works for SPO Software Engineering
and that good communication channels are established. These assumptions may not be

valid in all situations.

RV “;'? Rl dir s - T v

The AFPRO received the lowest score and, therefore, was rated best. It is generally
recommended that the AFPRO perform data collection and analysis for the SPO.

When this cannot be negotiated, it is recommended that an IV&V contractor be

assigned this task. Although SPO Software Engineering and the IV&V contractor are
rated equally, the recommendation to use an IV&V contractor was made because of
better labor availability. It is recommended that a chart similar to the one shown in

Table 2.3-1 be developed early in a program.

A proposed DID, Software Quality Evaluation Report, is contained in Appendix C and
can be used to report data collection and analysis results to the software acquisition
manager. This feedback enables the manager to track progress, ensure that require-
ments are being satisfied, and take corrective action when necessary. Recommenda-
tions for responsible organizations and relationships for monitoring are shown in Figure
2.3-4.

The preceding paragraphs discuss government monitoring only, and the development
contractor was not mentioned. Because quality factor requirements are included as

contractual requirements, the development contractors must also monitor achieved

quality levels to show compliance. However, to ensure that data and reports received
q by the SPO are unbiased, we recommend that the government independently monitor

achieved quality levels.

o . “ . - -
EEEES

N

I irCaie i g et
LN .

O T W . - - -
PRI U WU WITIE W WU S ST, N WD SN S P AP PO

2
b
2
h
N
3
p
L
}
-
;
¥

Dt Maa N Al A S it Ve e Bt e A SR A e e Shiie V8 iy b Sl el it 1 e d B B S~ A AR e aeas Secs meen deeis o au

S

Y e Wt T . -

Recommended Responsibilities and Relationships for the QM Monitoring Function

Provide quality metric
data

RADC
DAaCS

Provide quality metric
evaiuation

= == = inaicates ailternate source

Figure 2.3-4

LA e |

PAPARIPAN

v e -y Y P T
ot e T e e e e,

~— vy
. 3

Y
DU RN S

LAV Vg i
b
.

2.4 IMPLEMENTING QUALITY METRICS

We recommend performing both near-term and long-term activities to ensure
successful implementation of QM technology in the Air Force acquisition process.
Near -term activities should enable initial use of QM technology. Long-term activities

should enable the technology to mature.

2.4.1 Near-Term Implementation

Near-term activities should include trial programs to evaluate utility of the
terminology, policy changes to initiate use, and education and training for

familiarization.

Trial Programs. We recommend that QM technology be used on several trial programs
prior to full implementation in the Air Force acquisition process. The purpose of the
trial programs is to test acceptance and usefulness of QM technology and guidebooks.
Programs selected should be representative of programs from each product division.
These programs should be different than those selected to validate the methodology
(see Sec. 5.0).

RADC should coordinate with the product divisions to identify candidate programs.
The bases for seiection should favor evolving the QM technology. RADC should work
with computer resources focal points and software QA personnel at the product

divisions to obtain data for selection.

Policy Changes. Policy change should include changes to regulations, standards, and
DIDs that control using QM technology and to guidebooks addressing QA, reviews, and
audits. Changes should be submitted early as it takes 1-3 months to incorporate
changes to guidebooks and policies at the product division level and 6-12 months (or
longer) to incorporate changes to policy at AFSC or Air Force level. While policy
changes are being coordinated, a policy statement can be issued as an inierim measure
by higher-level headquarters to direct the use of quality metrics technology in

software acquisitions.

Detailed recommendations for changes are described in Section 6.0. Recommended

changes ensure that QM technology will be integrated into the Air Force acquisition

2-31

A
1

4
EESE
’ -4
-i_.:.;.;j_;
r————J 2

I A RS i N Pl Dat Bt i St R Tt At SR el it SRR N SRR Y ASe IR N TR S e S A Raiie N e Sl Ml Sal wall Shl Ak, SeibSdl bl Al S

E"{ process and that use of QM technology will begin prior to specifying system-level _
- requirements. We recommend that RADC contact the Office of Primary T
L Responsibility (OPR) regarding each regulation, standard, and DID to be modified and =T]
m coordinate change preparation. *:4
r]
Education and Training. We recommend an education and training program to prepare S

personnel in program offices for using QM technology because this technology is - j

relatively new. The program should consist of two courses addressing different issues: *’1

software quality specification and software quality evaluation. ff' E_’_i

]

The specification course should be tailored to the needs of Air Force software P

acquisition managers, software engineers, and software QA personnel. This course B 4

should include topics such as an overview of software quality assurance and its ' _ :

evolution to date, benefits of using quality metrics technology, how to specify QM j
requirements, how to make QM trade-offs, how to use evaluation data to track . 4

progress, courses of action that should be taken based on evaluation information, and '“‘—%

when data should be collected. The objective is to provide an understanding of the

role of QM technology in software acquisition.

The evaluation course should be targeted to data collection and analysis personnel. T

Topics for this course should include when to collect data, quality framework '}':;

elements, software products, data collection and analysis procedures, and automated ' %

data collection and analysis tools. The objective is to provide an understanding of]

quality factors and how to measure quality levels. "‘*‘g

R

!]
1 Both courses should be developed prior to using QM technology in the program offices.

;' It is recommended that RADC determine the best way to develop these courses and 1

r". initiate actions to enable development. RADC should also identify an OPR for ——-{

training to be conducted.

2.4.2 Long-Term Implementation

)
Long-term activities should include selecting and validating metrics for each product : ’_-_‘f.-;
division, establishing an historical data base, and automating potions of the procedural ':"-'_'"J

} steps. Each product division should select metrics appropriate to their applications, .

. -

»N - -]

T: g .‘:

a5 2-32 X

o) :4

° -
]

- A

“]

. e

. g
. .

P T S I .. PR R - ot R R, . . . T IS 5 o
PP .."..' S R LR R R vl . -, ."_‘.' L e \..' B
N A LT e e T e T e e USRS L O
™ N L SV AL U DY Lo | N T DR PR n PR P PP P W N Fr B C I N NPT G

Ty

vy
. N . FL

TR T ~ R Y e i W M SO e e W e mad M P wa Se LR el vn il Sad bad Snle Aad caaih Al Aad Bedl sed el sadt

validate metrics, and establish factor ratings for use in different applications. A
single, centralized data base should be established to enable validating metrics,
developing factor ratings, and evaluating success of the application of QM technology.

Portions of procedural steps should be automated to improve efficiency.

These activities place a requirement on the QM technology to be flexible for tailoring
to applications and for accommodating changes resulting from validation efforts. QM
foundation concepts (e.g., quality model and metric measurement) and the framework,
in general, were shown to be sound and flexible through repeated application to a
variety of programs. Many of the quality factors and metrics have been validated for
general applications, and new and revised factors and metrics have been incorporated.

Potential for growth and change is inherent in the QM technology.

Select and Validate Metrics. There are over 300 metric elements; some may not be
appropriate for specific applications. Each product division should select a metric
subset appropriate for its products that can then be tailored for specific applications.
A product division may also elect to generate and validate new metrics and metric

elements.

Establish Quality Metrics Database. When validating metrics and establishing factor
ratings, data is required from different applications to perform correlations and
comparisons. We recommend that the Data and Analysis Center for Software (DACS)
at Rome be used as the data base for quality metrics information and that the SPO
provide a copy of the quality requirements and all metric data to DACS (e.g., provide
a copy of the Software Quality Evaluation Report). This has the advantages of
providing one centralized location for all QM data and enabling access to all historical
data by any one product division. It also enables large-scale data analysis and
correlation to be performed on data from all product divisions. Any changes in QM
technology such as new factors, metrics, and worksheet formats should be

disseminated from a central point. This concept is illustrated in Figure 2.4-1.

Automatic Activities. Automating portions of procedural steps can improve efficiency
of the process. Candidates for automation or automated support include trade studies
considering factor interrelationships and life cycle costs, data collection and analyses,

and report generation. When source information for collecting data is documentation,

Ty Ty

R A I T R SR R N s I A B A AN S S SR, EON- SR ST, HAPE I SUP, SuPt il S HE I) e Tt At e A

i
ot
g

"

e

A

- --J
°. -
. ‘
P

-

- ..'
NN
) {
. _\}_j..\
SRS
® (
=
~ ~“ - ‘1
- '...' 1
) S
. ‘. “

- .-

. ‘!

‘ 1

o

L

| 2PEINE ol R NS A N i u A et igs R St
- -

R

> -

[

Framework Elements:

Factars

Criteria

Metrics

Metric Elements
Worksheets
Scoresheets

e Framework
Elements

e Historical
Data

DACS AT ROME
e Store Data
o Validate Metrics
s Enhance

Framework
Elements

—

—

QM
DATA
BASE

Figure 2.4-1 Relationship between Product Divisions and DACS

| AFPRODUCT DIVISION
| AFPRODUCT DIVISION

¢ Quality

AFPRODUCT DIVISION

e Select Framework
Elements

o Gather Metric
Data

¢ Analyze Data

Require-
ments

e Actuals
(Data,
Ratings &
Moditica-
tions)

=

o Metric
Data

PROJECT
PROJECT

PROJECT

" - . . . »
. e - . .) - e e e

‘ ‘ " - - - . - - - . - o -

. . v - - - -t - - . - .

; : ; > LN . - - ~ -

~ . *y .' .t .‘. LR - ~\ ..~ -l‘ . AT . .“

.- - D TR L e e RO

R i e e p g AP T, U R RPN P

PEEIATE, WOk, VR WRE DI PL . WAL VAR O, WO WL v WS WOl Wy, - W W0 o W

A S A

ORI)

- 4
.

-

‘-

.

.

-4

Por.
b

R
R
s
o
o]
(
-

- >
i A
St e e
R I]

. N ame s g -y
T . A 1

et

, P e A SRR B at- " e tet -
PP N o UG U YOO ST W PN U3 S W I i e e NIRRT SP . W)

S g e e St e de diae s S At Ssm e e Samn b it hate Sagh s - At Ao N YT SRl S G e A MO A 0 it aaoi i T 0 At S R T /A _'.

data normally entered on metric worksheets could be entered directly into a data base,
and reasonableness checks could be performed on data entries. When source
information is code, analyzers could be developed to gather metric data. The
Automated Measurement Tool (AMT) has been developed to gather metric data from
COBOL source code.

2.5 POTENTIAL BENEFITS AND PROBLEMS

This section discusses the potential benefits and problems associated with integrating
QM technology into the software acquisition management process and of using QM

technology during acquisition.
2.5.1 Benefits

Possible benefits of using QM technology include a higher quality end product, greater
emphasis on quality throughout the life cycle, better management control, and life-
cycle cost savings. A high—quality end product is possible because required quality
levels are specified quantitatively. There is little room for misinterpretation or for
undesirable results such as a highly efficient but unreliable and unmaintainable
product. The acquisition manager is assured that the end product is of the required
degree of quality. Also, other software requirements are considered at the same time
that quality requirements are being specified. @ This means that the quality
requirements should be reasonable and should not conflict with functional and
performance requirements (or vice versa), thereby increasing the likelihood that all
software requirements can be satisfied within allocated resources. In addition,
achieved quality levels are monitored throughout development providing increased
visibility for control of quality. Periodic application of metrics provides the
acquisition manager with adequate feedback about software development progress and
enables early redirection if necessary. Finally, evaluating specific low metric scores
provides an additional mechanism for detecting deficiencies and anomalies in

requirements, design, and code.

Life-cycle cost savings are possible for several reasons. Using metrics to detect
deficiencies and anomalies enables correction during development. Correction at this

time is less costly than during operation and maintenance. Also, it is possible to be

el

.
'

PR

ST e T TR T T T Y P e e P Pt in, il i Se i AR

- B LIRS e RSl Sl At S S A S S e S A Y Al Al Aad Ani Sk

inore precise about funding for quality. If adequate quality levels are achieved during
development, it is unnecessary to spend more effort in raising quality levels or in

developing a near-perfect product.

The greatest cost savings potential comes from having certain qualities actually built
into the software. For example, if system A has a high level of reusability built into
the software, then cost savings result from building system B reusing a portion of)
systen A software. These potential cost savings are available for other quality : ,
factors such as flexibility, portability, interoperability, and expandability. Details for :'_:":::f::

considering cost are described in Section 4.0 of the specification guidebook (Vol. II). ‘]

Other benefits can also be realized. For example, use of QM technology can provide
the acquisition manager an added assurance that the required degree of reliability is

achieved in the final product. This would be especially important in acquisitions

involving space applications or nuclear armaments.
2.5.2 Problems

There are potential technical and administrative problems when using quality metrics
in acquisitions; ie., in integrating QM technology into the Air Force software
acquisition process. Problems could arise during one of the most important tasks, that

of maintaining a current QM technology baseline. Baseline changes could result from,

for example, changes in quality factor ratings, new factor ratings being established,
new metrics being established, and metrics being validated for new application areas.
Changes could originate from any product division using QM technology. Using DACS
would minimize the risk of such problems as: multiple baselines in the product
divisions, duplication of validation efforts, and use of outdated information (e.g.,

outdated ratings).

- A potential problem could arise where subjective judgment is required in scoring some

metrics. Two people gathering metric data from the same software products could

g score the worksheets differently. This risk has been minimized by rewriting the

questions on the metric worksheets so that they are clear, simple, and understandable.
i_ Also, metric element explanations have been included for clarification. As more
'-' historical information becomes available, it will be possible to do a reasonableness

check on worksheet data entries, based on previous data ranges. However, we

recommend that experienced personnel perform data collection and that education and

training be provided for personne!l involved with QM technology.

Another potential problem might arise when attempting to automate portions of the
data gathering task through an automated measuring tool. This type of tool scans
source code and outputs statistics on the code (e.g., percentage of comments, number
of specific constructs). The scanner is language dependent and must be developed for

each language, but standardization on a language (e.g., Ada) will minimize cost.

Problems with organizational structures and manpower may be encountered when
implementing QM technology at the product divisions. Program offices do not have
QA divisions. QA in the program office is usually done by Engineering. In addition,
software QA organizations in the product divisions are relatively new. These
organizations are trying to define their role in the acquisition process and their
relationship to the program offices. Absence of a well-defined organizational
structure for software QA could lead to disagreements over assigning QM
responsibilities. Either organization could resist accepting responsibility for QM
functions because of staffing problems. Program offices are usually not fully staffed
with software engineers; to accept more responsibilities without additional personnel
would be difficult. Software QA organizations have small staffs and find it difficult to
hire qualified personnel. A person with experience in both software engineering and
QA is required, but fev software engineers are interested in QA assignments.

Staffing problems should receive attention during implementation of QM technology in

the Air Force software acquisition process.

]
a3

@

AR Ses Antt aath Bar A e e am _Sh et Suih Bets Seth Judh Sedh Mot 4 YA AN ARt i S A I S i — AR N e “ab e oVl e M S 4 "Af.'.'.‘T

3.0 QUALITY METRICS FRAMEWORK

This section identifies enhancements made to the software quality framework in Task

2, Enhance Framework. The framework from the most recent Rome Air Development

Center (RADC) quality measurement contract (described in RADC-TR-83-175) was
used as the baseline. The following sections provide descriptions of elements of the
enhanced framework: factors, criteria, metrics, metric worksheets, and factor
scoresheets. Changes to the baseline framework are discussed after the description of

each enhanced framework element.

An interim technical report (CDRL AO003) for this contract was produced that
describes an interim enhanced framework resulting from changes prior to July,
1983 —approximately the midpoint of this contract. Pertinent baseline elements from
RADC-TR-83-175 are alsc identified. Subsequent to the interim report,
DOD-STD-SDS and the STARS DIDs became significant considerations in enhancing
the framework. The following sections summarize the final enhanced framework and

all changes resulting from this contract.

General Description. The goals of quality metrics (QM) technology are to enable a
software acquisition manager to (1) specify the types and degrees of software qualities
desired in the end product and (2) predict end-product quality levels through measuring
the degree of those qualities present during development. The RADC quality program
(see Sec. 1.0) has established a model for viewing software quality. Figure 1.3-1
depicts this model, showing a hierarchical relationship between a quality factor,

criteria, and metrics. Criteria and metrics are factor attributes.

Quality factors (e.g., reliability, usability, correctness, and maintainability) are user-

S SR e DAt TP
" . . o .

oriented terms, each representing an aspect of software quality. Thirteen quality

factors are used to specify the types of qualities wanted in a particular software
. product. Product environment and expected use affect emphasis. For example, if
human lives could be affected, integrity, reliability, correctness, verifiability, and

survivability would be emphasized. If the software is expected to have a long life

———————

cycle, maintainability and expandability would be emphasized.

.........................
‘‘‘‘‘‘‘

- - - - - . " b T -~ e R - .
- AR . R P L PR, -
o A a b R el alie an [P IEANIVE, VONL, Wy T, S S ST Sy 1 W e

v

IR AR s e o

L)
P

¥
@

T+~

N e N s S N T T T T T T e T N T R T T e T T R T Y T N T e T, YW T W LYW VIO

Criteria are software-oriented terms representing software characteristics. For
example, operability and training are criteria for usability. The degree to which these
characteristics are present in software is an indication of the degree of presence of an

aspect of quality (i.e., a quality factor).

Metrics are software-oriented details of a characteristic (a criterion) of the software.
Each metric is defined by a number of metric elements. The metric elements enable
quantification of the degree of presence of criteria and, hence, factors. "Are all the
errors specified which are to be reported to the operator/user?" is an example metric

element question for the criterion operability (see worksheet 0, OP.1(2), App. A).

Using the methodology developed under this contract, the acquisition manager is
responsible for specifying needed quality factors by priority, with quality levels
commensurate with cost consideration. Factor requirements are provided as part of
the software requirements (along with operational, performance, and design
requirements). This enables the corresponding criteria and metrics to be identified
and used to measure the degree of presence of desired qualities at key review points
during development, allowing periodic predictions of the quality level for the final
product. Metric worksheets and scoresheets help in applying the metrics and in

determining metric scores.
Major Changes. Several major enhancements were made to the framework that
simplify the framework conceptually and ease the tasks of specifying quality

requirements and collecting metric data.

a. Factors and criteria were grouped in three categories—performance, design, and

adaptation—reflecting acquisition manager concerns.

b. Metric worksheet information was recategorized to enable metric questions to

be applied to specific products of phases described in DOD-STD-SDS.

Metric questions were completely rewritten using terminology described in

o

DOD-STD-SDS, using explanatory information and examples for clarity, and
including formulas to correlete answers. Metric questions are nearly identical to
questions in the Software Evaluation Reports proposed as part of the STARS

measurement DIDs.

R .
N e . .- e et ae e . P P . R . -
b RS/ LTI SR W P TR/ L. Y, ¥ b Wy IR T IPUIE U LY ¥ P P P 2.4 J PO SR, S R PO, ST S

. . A
LIS PRI

T e e Y M L et A S i A ot e e e mel e A A Ak e Bt and et wh el Al e .

d. New factor scoresheets were generated for translating worksheet information

into scores for metric elements, metrics, criteria, and factors.

Raticnale for change decisions include: (1) consistency within the framework, (2) ease
of understanding and use by a software acquisition manager and by data collection and
reduction personnel, and (3) compatibility with current DOD software technology

thrusts.
3.1 SOFTWARE QUALITY FACTORS

Description. Thirteen software quality factors are identified in Table 2.2-1, with the
user concern that characterizes the need for each type of quality. Quality factors are
shown grouped under one of three acquisition concerns: performance, design, or
adaptation. An acquisition manager specifying requirements for software will likely
do so in a DOD-STD-SDS format in four main areas: (1) software performance
characteristics (performance), (2) software design and construction (design), (3)
anticipated software expansion or reuse (adaptation), and (4) quality assurance
(including quality metrics). The similarity of areas and acquisition concerns enables
the acquisition manager to easily identify and select quality factor categories and
specific factors of interest. Quality criteria are similarly categorized (see Sec. 3.2);

thus, selecting criteria and metrics is simplified.

Changes. The three acquisition concerns—performance, design, and adaptation—were
formerly called life-cycle activities and were termed product operation, product
revision, and product transition, respectively. The reason for this change is that it is
easier for an acquisition manager to work with the new categories, as described in the

prior paragraph.

Two factors were moved under a different category when category names were
changed. Correctness, formerly under product operation (now performance), was
placed under design (formerly product revision). Flexibility, formerly under product
revision (now design), was placed under adaptation (formerly product transition). The
reason for this change is that it enables criteria to be categorized under the same
three acquisition concerns: performance, design, and adaptation. There were

formerly no categories for criteria.

Table 3.1-1

Software Quality Factor Definitions and Rating Formulas

L
< J
-~ s "I
—eead
‘F aly IS LY L ALY rAlTOR DEFINTION RATAG FORM & :
- . EFei BNV RECATIVE EXTENT TOWRICH BRESCURCE S 1w 2ED v e STORSGE | 1 ACTUAL RESOLRCE YT 128TON N
AR SPACE PRUCESSING TIME COMMUN.CA" 0N TME; AULGCATLD RESOURCE LT.IZATION b
. .
F I INTEGRITY EXTENT TO WHICH THE SOFTWARE Wity PEREORIMWITHOUT 1. ERROR Y
= FARUFES DUEL TO UNAUTHORIZED ACLESS TO THE COUE OR DATA LINES OF CODE R
. WITAIN & SPECFIED TIME PERIOD .
PERFLRMANCE RLOABLTY EXTENT TO WRICH THE SOFTWARE Witt PERFORM WITHOUT ANY 1 ERRORS :
FAILURES WiTHIN A SPECFIED TIME PERIOD LINES &F CODE 1
SLRVIVABILITY EXTENT TO WHICH THE SOF TWARE WiLL PEREORM AND SUPPORT 1t _ERRORS .
4 CRITICAL FUNCTIONS WITHOUT FAILURES Wil Mty 2 SPECIFIED TIME LINES OF CODE
. PERIOD WHEN A PORTION OF THE SYSTEM 1S INCPERABLE
s
LSABIITY RELATIVE EFFORT FOR USING SQFTWARE (TRAINING AND ¥ LABOR-DAYS TO USE
[OPERATION) (e ¢ FAMILIARIZATION 'NPUT PREPARATION LABOR-YEARS TO DEVELOP -
EXECUTION QUTPUTINTERPRETATION)
r E
L, — CORRECTNESS EXTENT TO WHICH THE SOF TWARE CONFORMS 101TS 1. ERRORS —
® SPECIF CATIONS AND STANDARDS “INES OF CODE 4
3
-y
DESGN Ma NTAINABILITY EASE OF EFFORT FORLOCATING AND FIXING & SOF TWARE FALURE 1 O 1{AVERAGE LABOR-DAYS TO FIX}
WiTHIN A SPECIFIED TIME PERIOD :
VERILABILITY RELATIVE EFFORT TO VERIFY THE SPECIH €0 SOF TWARE OPERATION 1. EFFORT TO VERIEY
AND PERFORMANCE £FFORT 10 DEVELOP -]
EXPANDABILITY RELATIVE EFFORT TOINCREASE THE SOFTWAKE CAPABILITY OR 1. EFFORTTOEXPAND -
PERFORMANCE BY ENHANCOING CURRENT FUNCTIONS OR BY ADDING EFFORT TO DEVELOP .]
NEWV FUNCTIONS OR DATA
FLEXIBILITY EASE OF EFFORT FOR CHANGING THE SOF TWARE MISSIONS, 1- 005 (AVERAGE LABOR-DAYS TO . ’
FUNCTIONS GRDATA TOSATISEY OTERREQUIREMENTS CHANGE) -
ADLPTATION INTERQPERARILITY | RELATIVE EFFORT TO COUPLE THE SOFTWARE OF ONE SYSTEM TO 1. EEFORY YO COUPLE ST
THE SOFTWARE OF ANCTHERSYSTEM EFFORT TODEVELOP DY
PORTABILITY RELATIVE EFFORT 1O TRANSPORT THE SOFTWARE FOR USE IN 1- EFFORT TO TRANSPORT A
ANOTHER ENVIRONMENT (HARDWARE, CONFIGURATION AND/OR EFFORT TO DEVELOP N
SOFTWARE SYSTEM ENVIRONMENT) .
REUSABILITY RELATIVE EFFORT TO CONVERT A SOFTWARE COMPONENT FOR USE 1. _EFFORT TO CONVERY —d
IN ANOTHER APPLICATION EFFORT TODEVELOP .
Lol
.t -, L
-
NOTE TrE RATING VALUE RANGE SFROMGTO 1 1F THE Y
VALUE S LESS THANGD Trk RATING VALUE 1§ ST
ASSGNED TOO
- -«
.y
3-4 -
PR PR LN PTG S P AT LTSS VL YL VP FRDURE VAR VR WA R WA Y

The user concern for ~orrectness was changed from a general concern for overall

software performance to a specific concern for conformance to requirements (i.e.,
specifications and standards). The reason for this change is that attributes of)
correctness deal exclusively with format of software design and documentation; none . N
deal with content material affecting software performance. g
3.1.1 Factor Definitions and Rating Formulas ~ ;
b

K

3.1.1.1 Description

Quality factor definitions and factor rating formulas are shown in Table 3,1-1. Rating

formulas quantify user concerns for the final product. The formulas use three types
of measurements: (1) number of errors per lines of code (2) effort to perform an
action and (3) utilization of resources. Ratings should fall in the range from zero to
one. The rating formula for reliability is one minus the number of errors per lines of
code. For example, if one error per 1,000 lines of code occur during a given time P k ;
period (e.g., during operational testing and evaluation) the rating formula shows a
reliability level of 0.999(1-1/1,000 = 0.999).

During software development, metrics are applied to software products, and a metric .__i
score is calculated for the appropriate factors. This metric score is an estimation (or .
prediction) of what the quality level will be for the final product. Figure 3.1-1]
indicates the timeframes during which rating values are estimated through metric

scores (closed box) and the timeframes during which rating values can be assessed by . '

using actual data and the rating formula (dotted box). For example, the rating value

S | .
; . .
P f
. . . oLt
L e P
. Tt SR B
. o . . .
oo ey vl Lt fa o te !
Sedenfomlanfddi e o d o

for reliability is estimated by using metric scores during software development.

During operational testing and evaluation and during production and deployment,

actual data on number of errors per lines of code become available to assess the rating ! ‘#
and evaluate predictions made during development. Exact correlations between ‘.::
metric scores and rating values have not been established. Research has only shown \
that higher metric scores during development result in higher quality end products. I
Table 3.1-2 shows a range of values for each rating formula that might occur when » - J
using actual data (e.g., during production and deployment) to assess rating values. The o ﬂ
values shown are hypothetical.]

. 1
The following paragraphs describe the factors and rating formulas in each acquisition . i
concern category. B

SURVIVABILITY

usABuITY

USE ASREQUIRED

fhe Sl R Faui St M S S i o T W e -« PR Dl i e AL A S Al Seia JUR S LA Nl Wl el e
APPLILATION
PHASE nTIAL USE Of PRODUCT NEW LSE OF PRODUICT
ACCLISITION
CONCERN SOF TWARE OPERATIONALTESIING | PRODUICYION AND SOFT.WARE OPERATIONAL TESTING PRCDUCTION AND
Quadly $aCTNOR Ob vELOPMENT AND EVALUATION DEPLOYMENT DEVELOPMENT AND EVALUATION DEPLOYMENT
PERFORMANCE
EeFGency S
NTEGRITY :
RELIABILITY SAME AS FORNTHAL

DESIGN

CORRECTNESS

MAINTAINAHILIT Y

vERIFIaB (' Ty

|

SANE a5 FORINTIAL
USE AS#LQUIRED

ADAPTATION

ExPANDAGLITY

FLERB:LTY

NTEROPERABILITY

PORTARILITY

RELSABNTY

{aR)

{AR)

L]

———

a RAT.HGESTIMATION

RATING ASSESSMENT

-1

=AY REURED

Figure 3.1-1 Rating Estimation and Rating Assessment Windows

)
. Quality factor Rating formula Rating information .
- Efficency 1. Actual ytilization Value 01 03 0S
Allocated utihization % utihzation 90% 70% 50% -
.- ntegrity .. Errors Value 09995 | 09997 | 09999 o
Lines of code Errors/LOC 5/10.000 | 3/10,000 | 1/10.000) T
" Rehability .. Errors Valye 0995 | 0997 | 0999 S
.. Lines of code Errors/LOC 5/1,000 3/1.000 1/1.000 S
Survivability ;. Errors Value 09995 | 09997 | 09999 R
f Lines of code Errors/LOC 5/10.000 | 3/10.000 | 1/10.000 A
Usability 1. Labor-days to use Value 05 07 09 ol
! Labor-years to develop Days/years S5/10 6/20 10/100 |__~____!
3 Correctness 1- Errors Value 09995 09997 09999 ‘..
4 Lines of code ErrorsitOC $/10.000 | 3/10.000 { 1/10.000 - -
: Maintainability - 0.1 (average labor- Valye 08 09 095 IO
4 days to fix Average tabor-gavs 20 10 95 o
] verifiability 1. Effort to verfy Value 04 05 06 _ ~ “_}
Effort to develop % effort 60% 50% 40% ’ o !
Expandability 1. Effort to expand Vailue 08 09 095 LT ,_~
Effort to develop % effort 20% 10% 5% ﬁ
Fiexibility 1- 0.05(average labor- Yalue 08 09 0495 R
days to change) Average [abor-oays 40 20 10 :)
Interoperability 1. Effort to couple Value 09 095 999 Rty _]
Effort to develop % effort 10 5 1 i" T
Portability A Effort to transport :/alue 09 0.95 099 s
Effort to develop % effort 10 5 1 s
Reusability _ Efforttoconvert :/alue 04 06 08 S
Effort to develop % ettort 60 0 20
r R
g L
L
E”.;
':_:
-
¢ |
b=, .
- PR
Y
o 3-7 R j
b-'_.‘ R ":
¢ '
te . .- . . . L N \'_‘
- e e e e e e aos oo i e

L e et i & WA S AN 8B RIS a0k YRl

Table 3.1-2 Quality Factor Ratings

L - gl " e ainh St i 0 St R aias A AL

Pl A S i

T

S “IREEAO - g
. .' . : 1‘)

Oam e b Sn g
- .

'l-'I

AR AR asdi it i
. e 3 el

Performance. Performance quality factors deal both with the ability of the software
to function and with error occurrences that affect software functioning. Low quality
levels predict poor software performance. These quality factors are efficiency,
integrity, reliability, survivability, and usability.

Efficiency deals with utilization of a resource. The rating formula for efficiency is in
terms of actual utilization of a resource and budgeted allocation for utilization. For
example, if a unit is budgeted for 10% available memory and actually uses 7%, the
rating formula shows an efficiency level of 0.3 (1 - 0.07/0.10 = 0.3).

Integrity deals with software security failures due to unauthorized access. The rating
formula for integrity is in terms of number of integrity-rélated software errors
occurring during a given time (e.g., during operational testing and evaluation) and total
number of executable lines of source code. This formula is similar to the formula for
reliability; the difference is that reliability is concerned with all software errors, and
integrity is concerned only with the subset of errors that affect integrity. For
example, if three integrity-related errors per 10,000 lines of code occurred during

operational testing and evaluation, the rating formula shows an integrity level of
0.9997 (1 - 1/10,000 = 0.9997).

Reliability concerns any software failure. The rating formula for reliability is in
terms of total number of software errors cccurring during a specified time and total
number of executable lines of source code. For example, if three errors per 1,000
lines of code occurred during operational testing and evaluation, the rating formula
shows a reliability level of 0.997 (1 - 3/1,000 = 0.997).

The concern with survivability is that software continue to perform (e.g., in a
degraded mode) even when a portion of the system has failed. The rating formula for
survivability is in terms of number of survivability-related errors (the subset of errors
that affect survivability) occurring during a specified time and total number of

executable lines of source code. This formula is similar to the formula for reliability.

Usability deals with relative effort involved in learning about and using software. The
rating formula for usability is in terms of average effort to use software (to train for

using it and to operate it) and original development effort. This formula considers size

. PR . . Lot AP . . L
B R PP LN UL SIS WP SO SR T S LR, W WELPE YT DU W VS DS UL B SRS N S JIUE USRI S S Y SN

l
A WP,

e
PN

“y

¢

(- IR
N B ‘.A 4 ‘-' - ‘..
SO AR

he i

o

-
b
e

}, IR
.o DR
r i . LA "
4 I ;' . P O .
R T
Acalata s e

-
e s o

-
|
iammd

T T . PR RN v it atd At Rl 19 e AP “Hhad et s it R R o St e, LR TN T T TR W TR W W W R AT W W T e e

of the software system in rating usability. It is recommended that effort to use be
expressed in labor-days and effort for original development be expressed in
labor-years to maintain a scoring range consistent with that of other factors. For
example, if 10 labor-days were required for training on a system that required 100
labor-years to develop, the rating formula shows a usability level of 0.9
(1 -10/100 = 0.9); and if five labor-days were required for training on a system that
required 10 labor-years to develop, the rating formula shows a usability level of 0.5
(1 - 5/10 = 0.5).

Design. Design quality factors deal mainly with software failure and correction. Low
quality levels usually result in repeating a portion of the development process (e.g.,

redesign, recode, reverify); hence the term design. The factors are correctness,

maintainability, and verifiability.

Correctness deals with the extent to which software design and implementation

conform to specifications and standards. Criteria of correctness (completeness,

R SR ct, S e

consistency, and traceability) deal exclusively with design and documentation formats.

Under the three criteria there are no metrics dealing with content material affecting

software operation or performance. The rating formula for correctness is in terms of
number of specifications-related and standards-related errors that occur after formal
release of the specifications and standards and total number of executable lines of
source code. This formula is also similar to the formula for reliability; the difference
is that correctness is concerned only with that subset of errors related to violations of

specified requirements and nonconformance to standards.

Maintainability is concerned with ease of effort in locating and fixing software

failures. The rating formula for maintainability is in terms of average number of
labor-days to locate and fix an error within a specified time (e.g., during production
and deployment). For example, if an average of 0.5 labor-days were required to locate
and fix errors during production and deployment, the rating formula shows a
maintainability level of 0.95 (1 - (0.1 x 0.5) = 0.95).

Verifiability deals with software design characteristics affecting the effort to verify
software operation and performance. The rating formula for verifiability is in terms

of effort to verify software operation and performance and original development

- ——r——
v T [} B
‘e -1 .

.

Y .
B YA

s
’

P

"t ey
‘ d_‘ e
. oo e .
d e ST
- B v

effort. This formula is similar to the adaptation, effort-ratio formulas. For example,
if 40% of the development effort is spent reviewing and testing software, the rating
formula shows a verifiability level of 0.6 (1 - 0.40/1.00 = 0.6).

Adaptation. These quality factors deal mainly with using software beyond its original
requirements, such as extending or expanding capabilities and adapting for use in
another application or in a new environment. Low quality levels predict relatively
high costs for new software use. Quality factors are expandability, flexibility,

interoperability, portability, and reusability.

Expandability deals with relative effort in increasing software capabilities or
performance. The rating formula for expandability is in terms of effort to increase
software capability and performance and original development effort. For example, if
five labor-months were spent enhancing software performance for software that
originally took 100 labor-months to develop, the rating formula shows an expandability
level of 0.95 (1 - 5/100 = 0.95).

Flexibility deals with ease of effort in changing software to accommodate changes in
requirements. The rating formula for flexibility is in terms of average effort to
change software to satisfy other (i.e., new or modified) requirements within a
specified time. For example, if an average of one labor-day was required to modify
software functioning during operational testing and evaluation, the rating formula
shows a flexibility level of 0.95 (1 -(0.05 x 1) = 0.95).

Interoperability is concerned with relative effort in coupling software of one system to

software of one or more other systems. The rating formula for interuperability is in
terms of effort to couple and original development effort and is similar to the formula

for expandability.

Portability deals with relative effort involved in transporting software to another
environment (e.g., different host processor, operating system, executive). The rating
formula for portability is in terms of effort to transport software for use in another
environment and original development effort and is similar to the formula for

expandability.

Lanr Jade s it/

A

3
g

et s 2 il Sa et Batt Sui Bav aaf Bes Jasn lah detiiandes s da-ainndato i i wina i afata e e it NC st AR A A

Reusability is concerned with relative effort for converting a portion of software for
use in another application. The rating formula for reusability is in terms of effort to
convert software for use in another application and original development effort and is

similar to the formula for expandability.

If adaptation effort is greater than original development effort, the effort-ratio
formulas will yield a quality level value less than zero. In this case, the quality level
value is assigned to zero. (This situation is considered unlikely because it would

probably be less expensive to develop a new product than to adapt an existing one.)

3.1.1.2 Changes

Only eight of the 13 factors had rating formulas that were validated during prior
contracts. Rating formulas were developed for the remaining five factors: efficiency,
integrity, usability, correctness, and verifiability. Format for new formulas conforms
to that for prior formulas (see Tbl. 3.1-1). The term "man-days" was changed to the

neutral term "labor-days" for maintainability and flexibility.

Factor definitions were changed for correctness and flexibility. The definition of
correctness was changed from "Extent to which the software satisfies its
specifications and fulfills the user's mission objectives" to "Extent to which the
software conforms to its specifications and standards". The reason is that attribute
criteria (completeness, consistency, and traceability) deal exclusively with design and
documentation formats. No attributes deal with content material affecting operation
or performance (i.e., attributes do not deal with satisfying specifications or fulfilling
user mission objectives). The definition of flexibility was changed from ". . .extending
the software missions. . ." to ". . .changing the software missions. . ." because

extension of capability is the domain of expandability.

The phrase "within a specified time period" was added to the definitions of integrity,
reliability, survivability, and maintainability. Examples of time periods are during
operational testing and evaluation and during the first year of operation and
maintenance. Current literature emphasizes use of a definite time period for
reliability modeling. Minor wording changes were made to factor definitions for the

sake of consistency and clarity; intent of definitions was not changed.

- 4 '-. - . ‘.’ . .y - -....' N o - ~ ®
AR, Y S . S PR, S L S P W S0, N S, v

ot WY
4
LA .

‘ ’ R A
14 Rk

Sl
Gal

-l'l"-
el

’
L L L

Table 3.2-1

Software Quality Factors and Criteria

. - » -
e wamat®lnh Can oW cwanna

el el et

L®

P I S I R B
LN DK AL IS DY S PR VPR SN NIE WAL WP

ACQUISITION CONCERN PERFORMANCE DESIGN ADAPTATION
) 3) R s | u M| v] e F i P R
o, A FACTOR/ACRONYM : N £ U S g A p x . N pS ¢
we A 3 T L] A R i R [€ T R U
LY Q [€ | v 8 [N | a X £ T 5
. U C G A] | € T F N | R a a
.] R 8 v L C A i 0 8 o 8 8
s € | 1 a 1 T i a a 1 P 1 \
' N T L 8 T N N 8 8 L £ L L
T C Y | t A E A] ' 1 R i '
! Y T t -5 8 L L T A T T
0 Y i S i | 1 Y 8 Y A4
. N T [T T !
[¥] Y 14 L
C T]
S Q Y T
. N v
b ¢
P—’— 3
R CRITERION/ACRONYM 3 | R S U C M v £ F i [R
N 3 G L v S R a € X X P o u
: o ACCURACY ac x
° [ANOMALY MANAGEVENT AM X X
R AUTONOMY Ay X
; DISTRIBUTEDNESS o] X
EFSECTIVENESS COMMUNICATION €7 X
M EFFECTIVENESS - PROCESSNG 34 X
A EFFECTIVENESS - 5" ORAGE £ x
? OPERABILITY or x
£ RECONFIGURAHILTY RE X
SYSTEM ACCESSIBILITY 139 x
TRAINING ™ X
0 L]
€ COMPLETENESS C x
H CONSISTENCY cs X
! TRACEABILITY TC X
G VISIBILITY Al
N
APPLICATION INDEPENDENCE ap
A AUGMENTABILITY AT
o] COMMONALITY L
A DOCUMENT ACCESSIBILITY DO
s FUNCTIONAL OVERLAP O
A FUNCTIONAL SCOPE FS
T GEMERALITY CE
! NDEPENDENCE 0
2 SYSTEM CLARITY ST
SYSTEM COMPATIBILITY 3%
VIRTAUTY VR
° NODULARITY MO X
N SELR DESCRIPTIVENESS 1)
3 SYMPLIC.TY M X
-]
a
A DR o -

A AT i 4 9n i T e e Wil Tl Sl Sl Sl il St il S S At S A ir Sl I LM A Sl S R Qe I A R o e o ."-
N
<

L]
<

3.1.2 Quality Factor Interrelationships R

Relationships exist among quality factors; some relationships are synergistic and Lo
others conflicting. Specifying requirements for more than one type of quality for a !. '“‘1

product can possibly have either a beneficial or an adverse effect on cost to provide |
the quality. Factor interrelationships are discussed in Section 4.0 because this aspect

of the framework was enhanced when developing specification procedures during

Task 3.) * j

3.1.3 Quality Factor Relationships to Life-Cycle Phases RN

\f\iu:

P

When using QM technology in acquiring a product, additional costs are associated with ! f
quality-related activities during software development. Benefits are also possible]

during software development and subsequent phases. Costs and benefits will vary for _ L

different factors, different factor combinations, and different activities within the

life cycle. Relationships of quality factors to life-cycle phases are discussed in i ?

; Section 4.0 because this aspect of the framework was enhanced when developing -
.- specification procedures during Task 3. i
3.2 SOFTWARE QUALITY CRITERIA t. 4

3.2.1 Description e -

L

Criteria are software-oriented terms representing software characteristics. Software u

quality criteria can be grouped under the same three acquisition concerns as quality

factors: performance, design, and adaptation. Table 3.2-1 shows the relationship of

criteria to quality factors. Four categories for criteria are shown: performance,
design, adaptation, and general. Each criterion is an attribute of one or more quality
factors. The criteria in the first three categories are solely attributes of factors
within the same acquisition concern (i.e., performance, design, and adaptation).
Criteria in the fourth category are factor attributes within more than one acquisition

concern.

Criteria and factors within each category are listed alphabetically for easy
referencing. Alphabetizing by name or by acronym gives the same sequence. Criteria

definitions are listed in Table 3.2-2.

.-

RO (O R S
‘-'. -‘\- - W

- . [
} P I PRSP U N . N T e Tt et . . L '.‘-.."- - o, . -
.A.AA.R A .n“‘..-'j.n B N S S L W S TP S P T PP T Y T P I P VR U P O L A

Table 3.2-2 Quality Criteria Definitions

ACQ-
UISi-
TION
CON- | CRITERION ACRONY M DEFINITION
CERN-
ACCURACY ac Those characteristics of scrtware which provide the required precision in
Caitulatnions annd DutpULS
ANOMALY MANAGIMENT AM Tnose cnaracteristics ot software wnich provide for continuity of operations
unger argrecovery from non-nominai conaitions
AUTONOMY 1% Those craracteristics of software which getermine 1ts non-gepenaency on
[} interraces and funcuons
3 OISTRIBUTEDNESS Di Those cnaracteristics of software which getemrine the degree to wnich software
R tunctions are geograpnically or l0gically separated within the system
EFFECTIVENESS-COMM EC Those characteristics of the software wnicn provige for minimum ytihization of
F wommunications resources in perfcrming tuncuons
0 EFFECTIVENESS-PROCESSING EP Those characteristics of tne software wnich proviae for mimimum utilization ot
- R processing resources 1n performing functions
M EFFECTIVENESS-STORAGE ES Those characteristics of the sottware whicn provice for minimum utshization of
storage resources
A OPERABILITY orP Those characteristics of sottware which determine operations and procedures
N concerned with operation of sottware ana which provige usefui nputs ang
outputs which can be assimilated
r. ~ N -
4 g RECONFIGURABILITY RE Those charactensucs of software which provide for continuity of system
t ?oeranon when one or more processors. storage units, or communication hnks
aus
L SYSTEM ACCESSIBILITY SS Those characteristics of software which provide for control and auait of access to
L. the software ang data
+L.—'.' TRAINING N Those characteristics of software which provide transition from current operaton
and provige initial famiiianization
N D COMPLETENESS cp Those characteristics of software wnich prowide tull impiementation of tne
| p functions required
3 g CONSISTENCY (& Those cnaracteristics of software which orovide tor uniiorm design and
X Implementtion techniques ang NOtation
) | TRACEABILITY TC Those cnaracteristics of software which provide a threaa of ongin from the
L G iMorementation to the requirements witn respect to the specifiea oevelopment
o N envelope and operationat environment
ViSIBILITY VS Those cnaracteristics of software which provide status monitoring of the
deveigpment and operation
APPLICATION INDEPENDENCE AP “hose cnaracteristics of software which detemrine 1ts nonaepengency on
gatapase system mucrocode. computer architecture, ang aigorithms
5 AUGMENTABILITY AT Those cnaracteristics of sottware wnich provide for expansion of capabiiity for
i tunctions and data
S COMMONALITY CL Those characteristics of software which provide for the use of interface standards
R A for protocols. routines. and data representations
D DOCUMENT ACCESSIBILITY DO Those characteristics of software which provides for easy access to software and
selective use of 1ts components
g FUNCTIONAL OVERLAP FO Those characteristics of software which provide commaon functions to both
systems
T FUNCTIONAL SCOPE FS Those characteristics of scftware which provide commonality of functions among
. A 3pplications
. GENERALITY FE Those characteristics of software which provide breadth to the functions
T cerformed with respect 1o the appitcation
o | INDEPENDENCE 1] Those characteristics of software which getermine 1ts non-dependency an
b 0 software environment (computing system. operating system utilities. InDut.
. N outout routines. hibraries)
SYSTEM CLARITY ST Those characteristics of software whaib provide for clear description of program
[] structyre in a non-complex and ungerstandable manner
e - SYSTEM COMPATIBILITY SY Those charactenstics of software wnich proviae the haroware. software and
:.__. communication compatibitity of two systems
VIRTUALITY VR Those craracteristics of software which present a system that does not require
b . user knowledge Ot the pnysicai. }ogical oOf 1000+0G:Cal Cnaracternsucs
R G MODULARITY VO Those cnaracteristics of software wnich provige a structure o higniy conesive
e, £ componrents with optimum coupiing
- N SELF DESCRIPTIVENESS S Trose cnaracteristics of sottware which provide expianation of the
. 'mpiementation of functions
® 3 SIMPLICITY St Those characteristics of sottware which provide for definition and
- - R impiementation of functions in the most noncomplex and understandable
- A manner
-
e L
-l
-
"
[
o
-
1
- 3-14
X
.t - - W . e
. e - - - -.“' N \.
. - . N sl o

RARGE SRR
]

T

e
B .

i s e ot g

NESN

-‘l’

3.2.2 Changes

Criteria were categorized under the same three acquisition concerns as quality
factors: performance, design, and adaptation. This was possible because of the
recategorization of quality factors. There were formerly no categories for criteria.

This change simplifies selection of factor attributes.

Both criteria and factors were organized alphabetically within each acquisition
concern. Some criteria acronyms were changed so that alphabetizing by name or by

acronym gives the same sequence for easy referencing.

The number of criteria was changed from 30 to 29. Specificity and conciseness were
deleted; metrics for these criteria (formerly SP.! and CO.l) were placed under
simplicity (as SL5 and SL6, respectively) with metrics that are similar in scope.
Communicativeness was deleted; metrics for this criteria (formerly CM.1 and CM.2)
were placed under operability (as OP.2 and OP.3, respectively) because both deal with
operational usability. Effectiveness was expanded to three criteria: effectiveness-
communication, effectiveness-processing, and effectiveness-storage. Metrics for
effectiveness were placed under the new criteria. The new criteria were created to
enable differentiation of concerns for communication, processing, and storage

efficiency at the criteria, rather than metric, level.

Minor wording changes were made to criteria definitions for the sake of consistency

and clarity. Intent of the definitions was not changed.

3.3 SOFTWARE QUALITY METRICS

3.3.1 Description

Metrics are software-oriented details of a software characteristic (a criterion). Each
criterion consists of one or more metrics. Each metric is an attribute of only one
criterion. Table 3.3-1 lists the name and acronym of each criterion (in alphabetical
order) and the name and acronym of each metric that is an attribute of that criterion.
Metric acronyms are acronym extensions of the parent criterion. For example, the
acronym for the criterion commonality is CL; the acronym for the three metric
attributes are CL.1, CL.2, and CL.3.

PR P et e

Al A M I A Tt A Y IS § S0 4n A anibie 0 S aie il Wiy Nl Wil Ay Yl Al A A A S A S i AT

Table 3.3-1 Quality Metrics Summary
CRITERION METRIC
NAME ACRONYM NAME ACRONYM
ACCURACY AC ACCURACY CHECKLIST ACH
ANOMALY AM ERROR TOLERANCE/CONTROL AM
MANAGEMENT IMPROPER INPUT DATA AM 2
COMPUTATIONAL FAILURES AM 3
HARDWARE FAULTS AM 4
DEVICE ERRORS AMS
COMMUNICATIONS ERRORS AM B
NODE/COMMUNICATION FAILURES AM.7
APPLICATION AP DATA BASE MANAGEMENT IMPLEMENTATION AP
INDEPENDENCE INDEPENDENCE
DATA STRUCTURE AP 2
ARCHITECT'JRE STANDARDIZATION AF 3
MICROCODE INDEPENDENCE AP 4
FUNCTIONAL INDEPENDENCE AP S
AUGMENTABILITY AT DATA STORAGE EXPANSION AT
COMPUTATION EXTENSIBILITY AT2
CHANNEL EXTENSIBILITY AT3
DESIGN EXTENSIBIUTY AT 4
AUTONOMY AU INTERFACE COMPLEXITY AU
SELF-SUFFICIENCY AU2
COMMONALITY CcL COMMUNICATIONS COMMONALITY CL.t
DATA COMMONALITY cL.2
COMMON VOCABULARY cl3
COMPLETENESS CcpP COMPLETENESS CHECKLIST CcP
CONSISTENCY (%3 PROCEDURE CONSISTENCY (@3]
DATA CONSISTENCY 2
DISTRIBUTEDNESS D1 DESIGN STRUCTURE DI
ODOCUMENT DO ACCESS TO DOCUMENTATION DO
ACCESSIBILITY WELL-STRUCTURED DOCUMENTATION DO 2
EFFECT!VENESS- 1 COMMUNICATION EFFECTIVENESS MEASURE ECH
COMMUNICATION
EFFECTIVENESS- EP PROCESSING EFFECTIVENESS MEASURE EP 1
PROCESSING DATA USAGE EFFECTIVENESS MEASURE EP2
EFFECTIVENESS-STORAGE ES STORAGE EFFECTIVENESS MEASURE ES.
FUNCTIONAL OVERLAP FO FUNCTIONAL OVERLAP CHECKLIST FO.1
FUNCTIONAL SCOPE FS FUNCTION SPECIFICITY FS1
FUNCTION COMMONALITY FS2
FUNCTION SELECTIVE USABIL!TY FS.3
GENERALITY GE UNIT REFERENCING GE)
UNITIMPLEMENTATION GE2
INDEPENDENCE D SOFTWARE INDEPENDENCE FROM SYSTEM D1
MACHINE INDEPENDENCE D2
MODULARITY MO MODULAR IMPLEMENTATION MO 1
MOJULAR DESIGN MO 2
OPERABILITY orP OPERABILITY CHECKLIST op
USER INPUT COMMUNICATIVENESS orP2
USER QUTPUT COMMUNICATIVENESS orP3
RECONFiIGURABILITY RE RESTRUCTURE CHECKLIST RE 1
SELF-DESCRIPTIVENESS SD QUANTITY OF COMMENTS SO 1
EFFECTIVENESS OF COMMENTS SO 2
DESCRIPTIVENESS OF LANGUAGE S0 3
SIMPLICITY Si DESIGN STRUCTURE St
STRUCTURED LANGUAGE ORPREPROCESSOR St2
DATA AND CONTROL FLOW COMPLEXITY Si3
CODING SIMPLICITY S1 4
SPECIFICITY SIS
HALSTEAD'S LEVEL OF DIFFICULTY MEASURE Si6

L ras sy o LR var sy it G gt i Andh st el St A At A At A S AR aiCul S I PO A P SN RN AR N T TSI L e e T 'r.-i
L. R
L% ot oo
» . 4
r — —d
¥ i i (continued) * .4
4 Table 3.3-1 Quality Metrics Summary (con SIS
L. LR ’
‘- - - o
n oy
- o T 4
. CRITERION METRIC e
- - s
o _{
NAME ACRONYM NAME ACRONYM
SYSTEM ACCESSIBILITY ss ACCESS CONTROL $S.1 R
ACCESS AUDIT $$ 2 -
SYSTEM CLARITY ST INTERFACZ COMPLEXITY ST 1
PROGRAM FLOW COMPLEXITY ST2 o]
APPLICAT.ON FUNCT.ONAL COMPLEXITY ST.3 - "
COMMUNICAT.ON COMPLEXITY sT4 e . 4
STRUCTURE CLARITY sTS)
- SYSTEM COMPATIRILITY sY COMMUNICATION COMPATIBILITY SY 1 - - 1
{ DATA CONPATISILITY SY 2 R
- HARDWARE COMPATISILITY Sy 3 C
. SOFTWARE COMPATIBILITY Sy a -
;‘ DOCUMENTATION FORQOTHERSYSTEM SYS -
H TRACEABILITY TC CROSS REFERENCE TC. -
ﬂ TRAINING ™ TRAINING CHECKLIST N1 >
L VIRTUALITY VR SYSTEM/DATA INDEPENDENCE VR 1
VISIBILITY Vs UNIT TESTING iS5
INTEGRATION TESTING S 2 K
CSCI TESTING VS 3 : S
} el
C ’ f
BN
2 S [
s k
=
-
h:,
}
g
L,'
-
r,
L
.-
P"
L.
.
L-
5
-
[
[:
L-
-
-
b
S
9 AT
-7.‘- ~
F . . K
- 3-17 .
5 R)
y
. »
- : C
b - . S - J
; - . P O L e et g o SN T i
ol S ™ “ - . - ry S e 4 LY + 2 o .

. e aon o o
oy

('i’
i

Dl

amr
'

L 00 SEL A0h Sun S o SaERect

e
.
e

LN aPI el MM SN Sl deas o g

H.-.-ﬁ.-.'.-, .) e
-1_-.-_-.__~ St L. - LI N PR L
L L W WP, DG DR IPREAPIE L IR s GRS, WAL I P D W P ST S

Each metric is defined by one or more metric elements. Metric elements are detailed
questions applied to software products; answers to them enable quantification of
metrics and of the parent criterion and factor. Metric elements are designated by
acronym only (no name) and are listed on the metric worksheets. Acronym designation
Is an extension of the parent metric acronym. For example, the 14 metric element
acronyms for the metric CL.1 are CL.1 (1) through CL.1 (14).

3.3.2 Changes

Several metrics were changed in conjunction with criteria changes, as mentioned in
Section 3.2.2. The metric of specificity, SP.1, was changed to simplicity metric SI.5.
The conciseness metric, CO.l, was changed to simplicity metric SL.6. The two
communicativeness metrics, CM.l and CM.2, were changed to operability metrics
OP.2 and OP.3, respectively. The four effectiveness metrics were placed under three
new criteria. EF.l was placed under effectiveness-communication as EC.l. EF.2 and
EF.3 were placed under effectiveness-processing as EP.1 and EP.2, respectively. EF.4

was placed under effectiveness-storage as ES.1.

Minor changes were made to metric names to help clarify the characteristic being
measured and to be consistent in naming style. The terms "checklist" and "measure"
were dropped from most metric names because they are misleading; metric elements
are most often a combination of checklist and measurement questions. The term was
retained when the name resulting from dropping the term might be confused with a

criterion name.

Extensive changes were made to wording of metric elements for consistency, clarity,
and ease of understanding. However, the software characteristic being measured by
the metric, as the collection of metric elements, was generally not changed. The
purpose of this enhancement was to enable a better understanding of metric elements
by users. Validity of metrics was not questioned and no new metrics were added.
Many examples were added to metric descriptions to help clarify intent; and
explanatory information, formerly contained in a separate appendix, was integrated
into the text. Terminology was changed to be consistent with proposed
DOD-STD-SDS; for example, module was changed to unit. Changes were also made to
the worksheets; some format changes affected metric elements and are described in

Section 3.4.

RER - - Lt et et e - DR T [N - .
e e L T P PR S P P . e e e LT Lt [" -
ENPAE SN WG, WP W s Wy o Wt BB B o o B B, o, B B

[
ot

-~ AR Ml badh S el e bt vl el Sl Salsall s b tell Sl andh sud ook ik Sed matl o & and And Bt Aad and At it et Sk gl dnd el !
Rl . T Ay VTR v e e PR Rt Rl A el Sub gt T

g - w4 Pl T e e v
Clal i Sk ‘Sl A" A At “hem b NS Ve te i G 2B N Wil Ma i Sl el Sl S A AEEE D A i AP A L e SRS A T LT T T TR O M

Two changes were made at the metric level. Function completeness, formerly FS.3,
was integrated with FS.2, function commonality, as they overlapped in scope.)
Function selective usability was changed from DO.3 to FS.3 because this metric deals i : "T
with functional scope. The following paragraphs highlight changes at the metric -_:- j_}_:
element level that affect scope of the parent metric. Changes are identified by -)

metric acronym and name.

.
R
PR

AM.7 Node/Communication Failures. The scope of this metric was expanded from

interoperating network nodes to include any interoperating system.

e

{

AP.2 Data Structure. The intent of central control of data could not be determined; -
so this aspect of the metric was dropped. ﬂ
1

AP.3 Architecture Standardization. A standard, 32-bit computer architecture was

unclear and considered inappropriate; so this aspect of the metric was dropped. i

AP.5 Functional Independence. One intent of this metric is to determine general

applicability of algorithms (i.e., not unique to one application). A table-driven ‘
algorithm was changed from the only way to achieve functional independence to an T
example of one method. The need for comments with algorithm code was considered ’-l:j.

the domain of self-descriptiveness and moved to SD.2, effectiveness of comments.

AT.4 Design Extensibility. Performance/price information for enhancement trades is) :

not typically required in software DIDs; so this aspect of the metric was dropped.

AU.2 Self-sufficiency. The aspect of this metric dealing with word-processing

4
]
capability was dropped because it deals with development environment rather than the) ‘

operational software product. - R

LR

L

CL.l1 Communications Commonality. Uniform message handling was added as a '_f‘;:.

P related aspect of network communication.

= CP.l Completeness Checklist. A new element was added to determine whether all
defined data items are referenced.

_—
-
‘-
. N3
PRV s e e

[N . . - R - BN . - o R .

O . T - - TR e IR T - L - . N RS
(WA P PP N WS P W WS CIR,) PRI OIS - b

A T PG Thr i e A w St S caut Sl Sh G A il Pa i S Sad il et A

R iy Fidt” i A i A P AL e il il St S S SL SEEL SAE a a,

CS.1 Procedure Consistency. A new element was added to determine whether all

references to the same function use a single, unique name.

CS.2 Data Consistency. A new element was added to determine whether all

references to the same data use a single, unique name.

DI.1 Design Structure. The meaning of logical structure and function being separated

in the design was unclear; so this aspect of the metric was dropped.

EC.1 Communication Effectiveness Measure. This metric currently has one element
dealing with specification of performance requirements and limitations. The element
was considered generally applicable to efficiency and was added to metrics EP.1, EP.2,
and ES. 1.

EP.1 Processing Effectiveness Measure. An aspect of this metric deals with internal
communication time between software elements (e.g., units). This is not typically
measured and may require special tools; so this aspect was dropped. A new element

was added dealing with specification of performance requirements and limitations.

EP.2 Data Usage Effectiveness Measure. A new element was added dealing with

specification of performance requirements and limitations.

ES.1 Storage Effectiveness Measure. The element of this metric dealing with virtual
storage was deleted because it is redundant with an aspect of virtuality, VR.l. A new
element was added dealing with specification of performance requirements and

limitations.

SD.2 Effectiveness of Comments. The need for comments with algorithm code was

moved to this metric from AP.5, functional independence.

ST.] Interface Complexity. The element of this metric dealing with interface nesting

levels was deleted because the meaning was unclear.

VS.2 Integration Testing. The element dealing with testing of specified performance
requirements was placed under the metric dealing with performance testing: VS.3,
CSCI testing.

rv—v—rn-r:ﬁ'ﬁ‘—v'v*r?w— !
. SO Y .

Ak
- [N

RO AL AR |

v

T,

o Rnre g 05 A e A AP i A A b i i Ml el ML A i ePal M Ciiaiibete M4 TMA AR d " - S e i S A L N). |

VS.3 CSCI Testing. The element dealing with testing of specified performance

requirements was moved to this metric from VS.2, integration testing.
3.4 METRIC WORKSHEETS
3.4.1 Description

Metric worksheets are contained in Appendix A. The worksheets contain metric
elements as questions. Software products (specifications, documents, and source
listings) are used as source information to answer questions on worksheets; answers are
then translated into metric element scores (yes = 1, no = 0, and a formula answer
results in a score from 0 to 1). This enables scoring of the parent metric, criterion,

and factor and results in a quality level indication for the product.

Seven different worksheets are applied in different development phases. Table 3.4-1
indicates the timeframe during an acquisition life-cycle phase when a worksheet is
used, shows the software level of abstraction at which the worksheet is applied, and

lists key terminology used within the worksheet.

Worksheet 0 is applied to products of system/software requirements analysis. The
worksheet is applied at the system level. (For large systems, software may not be a
discernible component in the design with separate requirements at the system level.

In this case, worksheet 0 is applied at the system segment level.)

Worksheet | is applied to products of software requirements analysis. A separate
worksheet is used for each CSCI.

Worksheet 2 is applied to products of preliminary design. A separate worksheet is
used for each CSCI.

Worksheets 3A and 3B are applied to products of detailed design. A separate
worksheet 3A is used for each CSCI. A separate worksheet 3B is used for each unit of
a CSCIL. Worksheets 3A and 3B are applied together; answers on 3B worksheets for
CSCI units are used in scoring the 3A worksheet for that CSCL

SO
o L o ': K
- RN T T S

. . - ~ L A
LA VAT SN SR S U BT UiV W NPT VIR Wil Sl Whe i SURE W IV W W W O W U WM AT WY

o
"
DR
o
R
o 4
DRSS
AR
A
o
P
U
»
LT
5

e ';

, P : . B
. . PR A . PN
. y N . . L.
. PP .
A pela ' oy
. s R . LN
- o . H v M -
I LT LA e e
’ . . o .o .
R e e e ey,
[s e s : . T W

’
PIPRP P R A

Table 3.4-1

Metric Worksheet /Life-Cycle Correlation

Life-Cycte
Phase/ Demonstration
Actvity & vahigation Full-Scale Development (FSD)
System/ Software
Software Requirements | Preliminary Detailed Coding & Csc CSCL- Leve! System
Application Level/ Requirements Analysis Design Design Uit Testing | integrauon & Testing Integration &
Terminology Analysis Tesung Testing
yeem To syoiem =T ———————— R
® System Metric 1] . i
functon Worksheet ! ! . i
e (SC 0 ! |
| ! . !
| |
® CSQ Metric] |
gscl & Sofiware Worksheet i 1
funcuon 1 1 I
| (Selected metric questions are)
® Cscl | reapplied dunng the integration] .
csc ® Top-level CSC w“':i‘;:f . | andtesung phases as indicated in the | R
o 25 ce | quality attribute correlation table in 1 R
| Appendix A.) | S
E
* o5l ' |
® Top-tevel CSC Metric Metric b
cscl e Lower-level Worksheet Worksheet | |
csC 3A 4A [|
® Unit | 1
| 1
UNIT 1 unit Metric Metric | I
Worksheet Worksheet |]
38 48] |
N R N N eepe— |
3-22

MMM SO

Worksheets #A and 4B are applied to products of code and unit testing. Worksheets 4A
and 4B are applied in the same manner as 3A and 3B. A separate worksheet 4A is used
for each CSCI, and a separate worksheet 4B is used for each CSC! unit.

For the remainder of the development cycle, selected metric questions are reapplied

as indicated in the quality attribute correlation table in Appendix A.

Metric worksheets are designed to be applied to software development products
identified in DOD-STD-SDS. The minimum product set is listed by software
development phase in Table 3.4-2. Each product is identified by title and by DID
number. Information from the entire set of products for a particular phase is needed
as source material to answer metric questions on the worksheet applicable to that
phase. It is not necessary to specify the complete product set for each acquisition,
only to have equivalent information available to answer worksheet questions. For
example, when acquiring a small system, information regarding the QA plan and

software standards may be included as part of the software development plan.
3.4.2 Changes

Metric worksheets and metric element questions on worksheets were revised
extensively. Changes were incorporated to enable worksheets to be applied during
phases defined in DOD-STD-SDS to products identified in DOD-STD-SDS.
Terminology was also revised to be consistent with that used in DOD-STD-SDS (e.g.,
unit rather than module and CSCI rather than CPCI). Formulas for relating metric
element data had formerly been contained in a separate appendix; these were
integrated into the appropriate questions on the worksheets. Explanatory material for
clarifying the intent of worksheet questions had formerly been contained in a separate
appendix; pertinent explanatory material was integrated into the text of questions, and
examples were included where appropriate. The end result is standalone worksheets
compatible with DOD-STD-SDS.

The baseline framework assumed five general software development phases:
requirements analysis, preliminary design, detailed design, implementation, and test
and integration. Product descriptions for these phases were general. Products for
phases described in DOD-STD-SDS are described in detail by DIDs (see Tbl 3.4-2).

Table 3.4-2 Software Development Products

Phase/Product Title Applicable DID

System/Software Requirements Analysis

System/Segment Specification DI-S-X101

Software Development Plan DI-A-X103

Preliminary Software Requirements Specification DI-E-X107

Operational Concept Document DI-M-X125

Software Quality Assurance Plan Di-R-X 105

Software Problem/Change Report DI-E-X106

Software Standards and Procedures Manual DI-M-X109

Preliminary Interface Requirements Specification DI-E-X108
Software Requirements Analysis ’

Software Requirements Specification DI-E-X107

Interface Requirements Specification DI-E-X108
Preliminary Design

Software Top-Level Design Document DI-E-X110

Software Test Plan Di-T-X116

Preliminary Software User’s Manual DI-M-X 121

Preliminary Computer System Operator’s Manual DI-M-X120
Detailed Design

Software Detailed Design Document Di-E-X111

Software Test Description DI-T-X117

Data Base Design Document DI-E-X113

interface Design Document Di-E-X112
Coding and Unit Testing

Source Code/Listings (Appendix)

Preliminary Software Test Procedure DI-T-X118
CSC integration and Testing

Software Test Procedure DI-T-X118
CSCl-Level Testing

Software Product Specification DI-E-X114

Software Test Report(s) DI-T-X119

Software User’s Manual DI-M-X121

Computer System Operator's Manual DI-M-X120
System integration and Testing

Software Product Specification DI-E-X114

Software Test Report(s) DI-T-X119

Software User’s Manual DI-M-X121

Computer System Operator’s Manuat DI-M-X120

P T NG e e T a e RS

'l't‘-\-'y ¢y e

Metric questions were recategorized among worksheets so that questic s can be lf.:)
. answered using specific DIDs as source material. This resuited in many changes in LA :
i applicability of metric elements to worksheets and to specific wording of questions. i”_ _—

The end result is worksheets that can be applied to development products identified in R
DOD-STD-SDS. . -f.f_-::'\:‘::

One problem with the baseline worksheets is that CSCl-level and CSCI
component-level questions were mixed on several worksheets. Separation of question
for application to software components or to software configuration items was left to
the user. Creation of worksheets 3B and 4B for application to CSCI units solves this

problem and simplifies scoring using worksheet data.

We worked closely with Dynamics Research Corporation (DRC) in revising metric
questions to be compatible with terminology, phases, and products for DOD-STD-SDS.
DRC had been responsible for drafting proposed DOD-STD-SDS and was drafting a set
of DIDs for the STARS measurement task. A subset of those DIDs was to address
software quality measurement and was to be compatible with Boeing Aerospace
Company (BAC) efforts for the current RADC quality measurement contract (this
contract). DRC produced nine Software Evaluation Report DIDs. BAC produced the
seven worksheets (see Tbl. 3.4-1 and App. A). Wording of questions on the DIDs and
worksheets is nearly identical. There are distinct differences between formats for the

DIDs and worksheets because they differ in purpose.

The worksheets and eight of the DIDs are designed to be applied to products of the
eight life-cycle activities identified in Table 3.4-1. The ninth DID is designed to be

applied during system performance testing. Separate worksheets are provided for

system/software requirements analysis through coding and unit testing; questions from
these worksheets are reapplied during subsequent test and integration activities. A
separate DID is provided for each of nine life-cycle activities; metric questions in the

DIDs for test and integration activities are a restatement of questions from prior

DIDs. (In other words, there is only a format difference between worksheets and DIDs
in this respect.) The worksheets include formulas for relating metric element data.
The DIDs collect only raw data and contain no formulas. The worksheets identify each

question by metric element acronym. The DIDs identify parent criterion name and

};

&
P
b
8
3
t.
g
#
¥

acronym and metric name and acronym and list questions sequentially under each

.. ‘ . ‘e
- P - LS -
w .- T e S .
R R R L S R IR R . e QI
LR I IS I D A U S S A AP IP I IS L B SCTE X TR S S Ty,
e T A L e e e e e L e e e, . P e I A R L L ST
L -.’.-"' 'd'-u' o i RIS S S e Ve M SR MR * ‘. . M ~ . g . wt
PPN L G PV LR YRR OSEN AUN S. P E R PR, . Y, WAL DUOPEINE DY PEIPULY DA res. s o) 2. L

o
g
)

P R

®

Pt st adnC B

[y

!
h.
L

metric (i.e., no metric element acronyms). CSCl-level questions and unit-level

questions are separated on different worksheets (worksheets 3A, 3B and 4A, 4B). Each
DID contains all questions for one phase and identifies the application level for each
question. Several minor differences occur in metric names (e.g., use of checklist or

measure in the name).

There are no differences between the worksheets and DIDs in intent or scope of any
metric. However, there are differences as to when metric questions are applied. The
primary difference is that, although questions in worksheets and DIDs correspond
during early development phases, sometimes a worksheet question is reapplied during a
test and integration phase and this question does not appear on the corresponding test
and integration DID. The primary focus of the joint effort with DRC was rewording
questions. Schedule constraints on DID delivery prohibited comparing and revising
task outputs. Differences in reapplication of metric questions were retained because
of the concern for updating worksheet information that may change during test and

integration activities.
3.5 FACTOR SCORESHEETS
3.5.1 Description

Factor scoresheets are contained in Appendix B. There are 13 factor scoresheets, one
for each software quality factor. Scoresheets are used for translating information at
the metric element level on the worksheets into a quality level score for a quality
factor. Each scoresheet has blanks for the factor and for all attributes of that factor
(i.e., criteria, metrics, and metric elements). Worksheet information is transferred to
the scoresheets at the metric element level. "Yes" answers are scored as 1l; "no"
answers are scored as 0; and numeric answers resulting from formulas are transferred
directly to scoresheets (scoring range from 0 to 1). Scores are then calculated for the
parent metrics, criteria, and factor according to the hierarchical (attribute)

relationship indicated on the scoresheet.

e Gt e e e e S SRR
Oy et e T T T e P W R W WAL AL SR WL AR, W

e g aae . A e iart Aan Jngt e . Sep. et Shem et hae i AUt e T it-ie ACHSRC At eSSt Stk N R Y -

3.5.2 Changes

The baseline used metric tables for scoring metric elements and metrics. Scoring of
criteria and factors was left to the user. Factor scoresheets enable all scoring to be

done on one form for each factor: metric elements, metrics, criteria, and factor.

3.6 REFERENCES

The framework elements from the most recent RADC quality measurement contract
(F30602-80-C-0330) were used as the baseline for enhancements. Framework elements

are described in two volumes.

a. RADC-TR-83-175 (Vol. I), "Software Quality Measurement for Distributed
Systems-Final Report", July 1983,

b. RADC-TR-83-175 (Vol. 1I), "Guidebook for Software Quality Measurement", July
1983.

Current literature, reports, and results of related contracts were examined when
enhancing the framework to identify potential problem areas and suggestions for

change. The following contract reports were useful.

a. Contract F30602-80-C-0265, RADC-TR-83-174 (Vol. I), "Final Report - Software
Interoperability and Reusability", July 1983,

b. Contract F19628-80-C-0207: (1) ESD-TR-82-143 (Vol. I), "Introduction and General
Instructions for Computer Systems Acquisition Metrics Handbook", May 1982; and
(2) ESD-TR-82-143 (Vol. 1I), "Quality Factor Modules—Computer Systems
Acquisition Metrics", May 1982.

c. Contract DAAK80-79-D-0035, MD-81-RAPS-002, "Radar Prediction System Metric

Evaluation", November 1981.

‘ - - . o . . * N ‘c
._,L-,-A__A- — _L\.Lhm; 2. _L‘.‘J_\._I_-J;L‘L;.AL.A..-“L._I.LAL [N W5 PR P WP PRI S S

e
.'.'.l.-.h.
RN,
e
-‘~'v j
--‘
. ‘1
R 'J
- - ‘—d
. _'l
S
—— el
] 4
.

r,
-]
!‘ -—‘_.
- .'.jf':1
S
Y
RN
] L

S
RO
L]
) f

o

P AR e i el ~ et~ st ar el ek

L atnit -

-

"

ra

-

o

LW,

W

\ af

L i e

- vd

-

W TR W W,

7Y Ty

L3N0 200 AU ¢

T T

b St tedn S uaal il Aeh Sinib iadh el Anib RSl i Sl il S A P U Rt o W M L ki Sl Sl Sandl S A AR Sk

4.0 QUALITY METRICS METHODOLOGY

This section summarizes results of Task 3, Develop Methodology. The methodology
from the most recent RADC quality measurement contract (described in
RADC-TR-83-175) was used as a baseline. This baseline was extensively revised and
enhanced. The focus of enhancing the methodology was to provide an acquisition
manager a means for determining and specifying quality factor requirements for
command and control applications. Emphases were placed on (1) techniques for
choosing appropriate factors and quality-level requirements through considering
quantitative assessments of factor interrelationships and factor life-cycle costs, (2)
procedures for specifying requirements, and (3) procedures for analyses of quality

mesurement data.

The methodology, procedures, and techniques are documented in Volume I, Software
Quality Specification Guidebook. Because enhancements to the quality framework and
methodology were extensive, a second guidebook was developed to address the needs
of data collection and analysis personnel. Procedures for data collection, analysis, and
reporting are contained in Volume III, Software Quality Evaluation Guidebook. A
specification of format and content for a report describing results of evaluation of
software quality was also developed. The specification is in data item description
(DID) format in Appendix C.

4.1 OVERVIEW

The following paragraphs provide an overview of the quality metrics (QM)
methodology. Subsequent sections highlight features of the methodology and

procedures developed for this contract.

Figure 4.0-1 shows the QM methodology in two major parts: software quality
specification and software quality evaluation. Specification is the responsibility of the
software acquisition manager and includes specifying software quality requirements
and assessing compliance with those requirements. Results of the compliance
assessment are used to initiate corrective action. Thc specification guidebook,

Volume 1l, provides procedural guidance. Evaluation is the responsibility of data

.........

.............

...........

(AVAILABLE FOR FORMAL
REVIEW PROCESS)
v
SOFTWARE QUALITY {
COMPLIANCE -
SPECIFICATION | ____, ASSESS COMPLIANCE —»| VARIATIONS ‘: = iy
GUIDEBOOK WITH REQUIREMENTS \ :
| oo
j) "
¥ !
proosreasaoas =1 '
e SPECIFY SOFTWARE 1 SYSTEM : 3
: k | QUALITY REQUIREMENTS). REQUIREMENTS | | . :
. SYSTEM NEEDS ! ': SPECIFICATION _ ! : -
v \ L hd ————
" -—-: \\- =" [} ¢
\\‘ LT J * T
T SOFTWARE QUALITY SPECIFICATION . AR, . o]
1] . A
| SYSTEM/SOFTWARE T
! DEVELOPMENT ‘ o
L ANDREVIEW : .
3 A
U S - — et
M .
AL s | 3 SYSTEM/SOFTWARE ! _—
i PRODUCTS @ NERR
SOFTWARE QUALITY : R H N
EVALUATION \\.___’,-‘ s K
GUIDEBOOK v R
ASSESS PRODUCT _ [SOFTWARE QUALITY .
QUALITY LEVELS » EVALUATION e -
SOFTWARE QUALITY EVALUATION

Figure 4.0-1 Software Quality Specification and Evaluation Process Sl

Ev_._.w‘r_ L NGNS bt S e e e’ SIS S P ke oSO A e e Y= i A A DL AL IS SR it gt JRar et it tarh S Sl Sty

collection and analysis personnel and includes applying software quality metrics to
products of the development cycle, scoring product quality levels, and reporting

results. The evaluation guidebook, Volume III, provides procedural guidance.

The process begins early in the system life cycle—usually during system demonstration
and validation. We assume that a description of the nature of the system and system
needs or requirements exists. This description could be a statement of work or a draft
system specification and is the primary basis for identifying software quality factor
requirements. A series of procedural steps is performed to determine specific
software quality needs and to specify quality requirements. Steps include polling
groups such as the Air Force using command and the Air Force Logistics Command
(AFLC) in order to provide a comprehensive set of operational and support quality
requirements from a quality factor point of view. These steps could be performed by

the SPO or the development contractor or through awarding a separate contract.

Software quality requirements are entered into the system requirements specification
and are treated as contractual obligations (just the same as technical requirements).
As the system contractor proceeds with development, quality requirements from the
system requirements specification are allocated to lower level specifications and
finally assigned to units within the software detailed design document in a manner
similar to that for other requirements. This requirements flow is shown in Figure
4.0-2. Each time during the cycle that a development product is released (usually at
major review points such as system design review (SDR), software specification review
(SSR), preliminary design review (PDR), and critical design review (CDR)), quality
metrics, in the form of metric worksheets, are applied to the products. Raw data are
then used to calculate scores indicating quality level achieved for each quality factor,

and these scores are compared to specified requirements.

Application of metrics and scoring of achieved product quality levels are performed by
the development contractor to show compliance with quality requirements. It is
anticipated that product evaluation will also be performed in parallel by another group
such as an IV&V team, the AFPRO, SPO Software Engineering, or Product Division
Software Quality Assurance, as is discussed in Section 2.3. Data collection and
analysis results are documented in a Software Quality Evaluation Report (see App. C).

This report is reviewed separately at major review points. The report is included in

PR A

Cote e et - et mte® .t S i . e - TR S LIPS
O N L. L) LI el Y PP W Bl U o e S b_.-__'.k; v AP ST T W LW P Iy o PP WA T

o iAattiie gl dhe b A N i U™ S Ve M, W P A e Ml VI VR Sl I Pl S CIAEAS

SRR SOR PDR EQUIVALENT
SR é COR SPECIFICATION
~ ~ ' v LEVEUTYPE

(MIL-5TD-490)

A
SOFTWARE SYSTEM
QuauTy REQUIREMENTS
REQUIREMENTS , ALLOCATION OF QUALITY
SPECIFICATION
REQUIREMENTS TO SYSTEM
SEGMENTS
\ 8-1
* SYSTEM
,——— SEGMENT
| SPECIFICATION ALLOCATION OF QUALITY REQUIREMENTS
| TO SOFTWARE AND HARDWARE Cr's
\ Y
[t - 8-S
' HARDWARE ! SOFTWARE
| REQUIREMENTS | REQUIREMENTS
| SPECIFICATION _ | SPECIFICATION ALLOCATION OF QUALITY
t s REQUIREMENTS TO
~---— | SOFTWARE COMPONENTS (WITHIN CSCI'S)
SOFTWARE TOP- cs
LEVEL DESIGN
OOCUMENT ASSIGNMENT OF
QUALITY
REQUIREMENTS TO
SRR = SYSTEM REQUIREMENTS REVIEW / UNITS s
SDR= SYSTEM DESIGN REVIEW SOFTWARE
SSR = SOFTWARE SPECIFICATION REVIEW DETAILED DESIGN
PDR= PRELIMINARY DESIGN REVIEW DOCUMENT

COR = CRITICAL DESIGN REVIEW
* = SEPARATE SPECIFICATION NOT ALWAYS USED

Figure 4.0-2 Flow of Software Quality Requirements

- . .
e B S s e AN R
RANENTY FEPNS PRSI TN

R P B
. B . AT
LTI JIR GV S S I Y

| o am o S ach AN ol e
.o N .

-y
PR

CERGIC ol e, Padiratase M Rut. iase it habt=Ahdh Yt . R e T T e T ST WA RN RN WE T RGOS W W Wy WS

the review package released before the review date. The SPO uses these results to
assess compliance with quality requirements and (1) approves or disapproves of
compliance variations at the review and/or (2) respecifies quality requirements and
ensures that changes are reflected in the system requirements specification.

Advantages of this methodology include:

a. Quality factor requirements are determined concurrently with technical
performance and design requirements—increasing the likelihood of a comprehensive
set of requirements which can be satisfied within allocated schedule and budget.

b. Requirements are allocated in a manner similar to the technical performance and
design requirements—allocations can be checked from the system-level downward,
and all lower -level requirements should be traceable.

c. Progress on achieved quality levels is assessed periodically—enabl!ing corrective
action to be taken in a timely manner.

d. Reporting of data collection and analysis results is comprehensive—providing

adequate information for decision-making on a course of corrective action.

4.2 FEATURES

This section highlights features of the methodology and procedures developed or
enhanced during this contract to support determining and specifying quality
requirements. For a complete description of procedural steps, refer to Volume II,

specification guidebook.

System-Level Focus. Specification of requirements is focused at the system rather
than software (CSCI) level. Quality requirements for software are derived by
examining a system description during system/software requirements analysis, so that

requirements reflect system and user needs.

Software quality factor requirements are specified for each system level function that
is supported by software. This enables freedom in designing software to optimally
meet the needs of all applicable system-level functions, yet ensures that all
system-level quality requirements are satisfied by the software design. This approach

parallels the approach to specifying and allocating technical performance and design

Bk

L

|

'
. [
ANV TP RS SR R

M T M T e T T W e W TN e W W e T g R T R T AR ETIRET =,
SN T T T T ST T TSI . A A S —

requirements and increases the probability of obtaining a complementary set of .

technical and quality requirements that are realistic. This approach also avoids

developing high quality levels for parts of the software not requiring high quality; this _)

situation can occur when requirements are specified for software as a whole, rather | A

than functionally. o

Procedural Levels. Procedures are organized by quality level-of-detail. Separate ..
a

procedures are provided for specifying requirements for factors, criteria, and metrics.
This approach parallels attribute levels in the hierarchical software quality model and

simplifies procedures.

Quality Goals. Three categories of importance (quality goc: levels) are used when .
specifying quality factor requirements: excellent (E), good (G), and average (A). The
categories enable differentiating among quality level concerns for performing factor

trade studies and avoid the complications of using a numeric goal level.

b
We recommend using a numeric range when stating factor goal levels in specifications, :
after trade studies have been completed. Separate ranges can be specified for each
goal level. Different ranges can be specified for different applications and for L
different functions within the same application. ',.)
Factor Dependencies and Interrelationships. Choosing quality factors and initial goal .f::
levels is primarily a matter of determining and translating system and user needs. ,_“_J
=~ Selecting achievable goal levels for the combination of factors chosen can be a ! J—
complicated process because of relationships among factors. We developed detailed e
E procedural steps to aid the acquisition manager in developing a realistic set of quality
! goals. Positive and negative factor interrelationships are quantified to indicate the
[f! degree of affect among factors. ': .
i
- Cost Considerations. Selecting achieveable goal levels also involves considering costs.
Developing high quality levels most often requires additional budget during the early S
r' phases of full-scale development (FSD) and most often results in cost savings (or cost | N
2 avoidance) during production and deployment. We developed a detailed analysis of
_ quality-related activities potentially affecting software life-cycle costs for each
s factor. Procedures aid the acquisition manager in determining relative cost variations .
¢)
' 4-6
)

| AD-A153 988 SPECIFICATION OF SOFTWARE QUALITY AT
- FINAL REPORT(U) BOEING REROSPRCE CO SERTTLE
7 P BONEK ET AL. FEB 85 D182-11678-1
UNCLASSIFIED RADC-TR-83-37-VOL-1 F38602-82-C-8137 F/G 972

==
~
»n

=

'S

E
rFCERERR
EEEE

E

rrr
r
rr

I
I

™

I

)
(&

i e

M

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

L v— S P RST Y NSYS Y ST ORI - h. W WL ml S et AV e b o DR b Nt bt it D N S il
L Sa LA e M o “ 0 Eas A L B «Lw - - . 2
18

RIS Mt fim et

P

W v rvvy

for the set of quality factors chosen and for refining quality goal levels based on cost

effects of positive and negative factor relationships.

Criteria Weighting. Criterion attributes of a factor may require different emphasis,
depending on the application and set of factors chosen. Weighting formulas are used
to show the specific relationship between a factor and its attribute criteria. Each
criterion is assigned a weighting value to indicate its percentage contribution to the
overall factor goal. This approach communicates the desired emphasis on software

characteristics for development and states the formula required for scoring.

We developed detailed procedures to aid the acquisition manager in determining the
appropriate emphasis on each attribute criterion. Procedures include considerations of

the application and effects of factor interrelationships at the criterion level.

Software Quality Evaluation Report. One important aspect of the QM methodology is
ensuring that quality requirements have been satisfied. The iterative nature of the
methodology ensures that the acquitions manager has ample opportunity to take
corrective action in a timely manner. The Software Quality Evaluation Report
provides the manager with adequate information to assess compliance with

requirements and to decide an appropriate course for any corrective action.

This report is contained in Appendix C in DID format. It requires that raw
measurement data, scoring data, scoring trends, analyses information, and corrective

recommendations be provided for all software quality factor requirements.

Command and Control Example. An example is used throughout the specification
procedures for a command and contro!l application. Procedural steps are applied to the
example system and results are explained. A large-scale command and control system
was used, and personnel familiar with system-level and software-level requirements
and design were consulted. This approach aided in developing realistic procedures and

provides the acquisition manager with an added depth of information.

Ty YT
C et

et}
oo

CANN . . aun

5.0 VALIDATION PLAN

This section summarizes results of Task 4, Develop Validation Plan. The purpose of
this task was to prepare a plan for validating the methodology and procedures for
determining and specifying software quality requirements. The methodology and
procedures were developed in Task 3 and are documented in the specification
guidebook (Vol. II). The following paragraphs describe an approach for evaluating the
usability of the specification methodology and procedures within the software

acquisition management process.

The goal of the methodology is to enable an acquisition manager to acquire a software
product which satisfies user quality needs. There are two major parts to the process:
specifying software quality requirements and evaluating achieved software quality
levels. Quality requirements are specified early in the software development process
and are included with performance and development requirements. Achieved quality
levels are evaluated at key review points in the development process such as PDR and
CDR. Success of the methodology depends not only on determining and specifying
realistic quality requirements and obtaining objective evaluations of achieved quality
levels but also on responding to scoring that indicates a variation from specified
quality requirements. This .nay involve redirecting development efforts and
reevaluating specified quality requirements in order to acquire a final product which

satisfies quality goals.

Validation efforts should focus on clarity, applicability, and effectiveness of the
methodology and support material (specification guidebook, procedures, figures,
tables, and Software Quality Evaluation Report). The methodology should be applied
during the development phases of at least two projects, concurrently. Projects should
be medium-sized command and control applications. (Application to large projects
may involve extraneous complexity; application to small projects may not validate
applicability.) Project development phases and review points should be compatible
with those defined in DOD-STD-SDS. Information required by system and software

deliverables should be compatible with information required by DIDs listed in Table
3.4-2.

d.

b.
c.
d.
e.
f.
g.
h.

i..

f
g a.
}. b.

C.
d.
e.
f.

P L NP AP L A S Sy WA T - PP WL W Yy WY PR W DY G STy

A rating scheme should be developed to evaluate the methodology and support
materials and consider the following, at a minimum:

Usability of the methodology within the acquisition management process and
soundness of approach.

Relative ease of learning, understanding, and applying procedures.

Clarity and completeness of procedures.

Clarity and completeness of software quality factors and criteria.

Appropriateness of metrics selected for use.

Reasonableness of specified software factor goals and criteria weighting.
Completeness and clarity of Software Quality Evaluation Report.

Completeness of compliance assessment.

Effectiveness of actions taken for compliance variations.

Questionnaires should be used to support the rating process.

Records should be maintained and should include:

Problems encountered with the methodology and its implementation.

"Side effect" problems resulting from introducing the methodology into an existing
process (e.g., conflict of technical requirements and quality requirements).

Costs and schedules associated with implementing the methodology, by phase.
Risks identified with implementing the methodology.

Unexpected benefits of the methodology.

Qualifications of personnel associated with the effort.

Showing success of this methodology depends, in part, on correlating specified quality
with the achieved quality; and this depends, in part, on validity of the quality metrics
used. Since not all metrics have been validated, evaluations of achieved quality should
be supported by independent assessments (e.g., questionnaires) and factor rating
calculations whenever possible. This will minimize the possibility of variations in

results due to the metrics themselves rather than the methodology.

e e e e e ‘e - Y

T

L I I
PUSESDPUTIT ol Gl W R W

- r

oAl A M M aA A A N S AR A i Y e

b
P_.
Ln
b
b

k.
-
L
ri.
S
.
b

b

’

[N

6.0 RECOMMENDED REVISIONS

This section describes recommended Air Force documentation updates resulting from
Task 6, Recommend Revisions. Content and wording changes to documentation used
by an Air Force System Program Office (SPO) are recommended in order to implement
quality metrics (QM) technology in the software acquisition process. Sectian 2.0
describes the role of QM technology in software acquisition; recommended revisions in
the following sections ensure that pertinent aspects of QM technology are identified as

specific required elements in software acquisition.
6.1 REVIEW AND RECOMMENDATION PROCESS

Documentation considered for review includes regulations, directives, specifications,
standards, guidebooks, and data item descriptions (DID). The purpose of these
documents in the acquisition process is to establish common directions and goals for
both government and contractor personnel. There are two basic document categories:

internal and compliance.

Regulations, directives, and guidebooks are internal documents and only apply to
government personnel. These documents define roles and responsibilities of
government personnel during the acquisition process and identify what should be
required of a contractor. These documents are not binding on a contractor.
Standards, specifications, and DIDs are compliance documents and impose
requirements on a contractor. They direct what the contractor must do during the
acquisition process. Change recommendations in the following sections are influenced

by the scope of effect of each document.

The first step was to compile an initial list of internal and compliance documents
potentially impacted by the implementation of QM technology (see Tbl 6.1-1).
Guidebooks and proposed Department of Defense (DOD) standards were later added to
the list. Guidebooks were added because they recommend practices influenced by QM
technology. Proposed DOD software standards were added because of the planned
influence on software acquisition. Two proposed standards were added: DOD-STD-
SNS and DOD-STD-SQS (formerly DOD-STD-SQAM). DOD-STD-SDS is now available

. . . -~

e P T ol S A S e O S

.t P L T A S P U
e e e e e e e e e L L

- .. A D .'.:"- et .
2L e - L S .= - .
a I, SN S LT R, T T T L VR IR T SRR DI T TG VY T IR DY SO e

N T Y o

.: T .
P o
. [
L,
., P T
R O
, S
. ' B
- -..‘

v

B
! (2 .
. .
e o
Lf;-_ :

G

’
LvS RS BN

. e)
R
St . R
e _.1\
| WSUIRY SR SR R ' § PN

®
ey
a0 e

PR
»
>]
SR
|
T
.

3
)

"]

]
o |
PO
BRI
) [
s e
. -_w

- .-.‘
S 4
.

»
S
>
e sl
2 -]
P

Table 6.1-1 Candidate Documents

MIL-5TD-490
MIL-STD-499A
MIL-STD-881A
MIL-STD-1521A(USAF)

MIL-STD-1588(USAF)
MIL-STD- 1589(USAF)
MIL-STD- 1679 Navy)
MiL STD 1815

TYPE NUMBER TITLE
DOD 4120 3-M Standardization of Policies, Procedures, and Instructions
DODD 5000 1 Major System Aguisitions
DODD 5000 2 Major System Aquisition Process
DODD 5000 3 Test and Evaluation
DODD 5000 19 Pohcses tor the Management and Control of DOD Intormation
Requirements
DOOD Document DOD 5000 19-L Volume !t Acquisition Management Systems and Data Requirements
{ Control List (AMSDL)
N DODD 5000 29 Management of Company Resources in Major Defense Systems
T DODD 5000 31 Interim List of DOD Approved High Order Programming
E Languages (HOL}
R DODD 5010 12 Management of Technical Data
N DO0DS010 19 Configuration Management
A DOD 7935 1-§ Automated Data Systems Documentation Standards
L AFR65-3 Contiguration Management
AFR 73-1 Defense Standardization Program
AFR-74-1 Quality Assurance Program
AFR80-14 Research and Development Test and Evaluation
AFR 300-2 Management of the USAF Automatic Data Processing Program
AFRB800-2 (C1) Aquisition Management - Program Management
AF Regulation AFR B00-3 Engineering for Detense Systems
AFR800-4 Transfer of Program Management Responsibility
AFRB0O-11 Life Cycle Costing (LCC)
AFR 800-14.volume | Management of Camputer Resources in Systems
AFR 800-14,volume I Aquisition and Suppurt Procedures tor Computer Resources in
Systems
AFR B0O-19 System or Equipment Turnover
MiL-Q-9858A Quality Program Requirements
Miitary Specfication MIL-5-52779 Sottware Quality Assurance Program Requirements
C MiL-5-83490 Specifications, Types and Forms
o MIL-STD-130€ identitication Marking ot U S mihtary Prorerty
M MIL-STD-4280 Configuration Contiol - Engineering Changes, Deviations and
P Warwers
L MIL-STD-481A Contiguration Control - Engineering Changes, Deviatians and
! Wauwvers (Short Form}
A MIL-STD-482A Contiguration Status Accounting Data Etements and Related
N features
E Mihtary Standard MIL-STD-483(USAF) Contiguration Management Practices tor Systems, Equipment,

Munitions and Computer Programs

Speufication Practices

Engineernng Management

Work Breakdown Structures for Defense Material items
Technical Reviews and Audits for Systems, Equipments, and
Computer Prugrams

JOVIAL{IZ)

JOVIAL{J73)

Tacucal Sotiware Development

Keference Manual for the Ada Programming Language

in draft form and is due to be released soon. Release of this standard and its
associated DIDs will impact other software acquisition documents; therefore, these
standards are the primary focus of review and detailed change recommendations.
DOD-STD-SQS was released in draft form as DOD-STD-SQAM, but, due to industry

review comments, it is scheduled to be rewritten. Only general change recommenda- L -T:z‘*
tions are included for this standard. - —i
The next step was to review the candidate list of documents to determine which ones . 1‘
affect software quality during the acquisition process. The list was narrowed for a - ".jQ"':'
more detailed review where recommended changes were formulated. The final result

was the recommended revisions in the following sections.

Y 1

6.2 REVIEW ANALYSIS

We anticipate that QM technology will be applied only to selected contracts during the

. AN .
il ,
T A

next few years as part of a validation process and that recommended changes to policy

formally implementing QM technology will not be made immediately. Therefore,

other policy changes likely to occur during this period should be taken into account. :::_'::'j
....__i'.i

If changes were to be made today, the primary focus would be on AFR 800-14, MIL- " .
o

STD-490, MIL-STD-483, MIL-S-52779, and MIL-STD-1521A. But the two proposed RN
DOD software standards change this focus. DOD-STD-SDS is expected to be released -
in January, 1985 and DOD-STD-SQS possibly one year later. Together, they should ...__.4
include all software development requirements to be imposed on contractors. The L“‘“
following paragraphs discuss affects of these two DOD standards on each of the W

documents named above.

IR, LR
{ v 4
P P

AFR 800-14 is the primary regulation directing Air Force personnel in software
acquisition. Changes to this regulation are required to direct Air Force personnel to
implement QM technology. This regulation is already in an update process due to
other policy changes and will undergo even further changes due to DOD-5TD-SDS. It
may be two years before this regulation is updated and released. In the interim, Air
Force System Command (AFSC) and Air Force Logistics Command (AFLC) will issue a
joint letter directing the use of DOD-STD-SDS in lieu of policy in AFR 800-14.
Changes caused by DOD-STD-SDS will be significant and will affect those areas that

........
........

I S A S R e e e, A RN .1,
- L3 LWL P A ’ LA e o < b P RN AN W W P Y G GOy 3 O DU R | .

e CadisiFadat™ ol A" Sl C e, bty Sl Caib sl i Sadih®™ ol i - Cladiis sl oW« Ol e W e e - - -yl ~ i - - W

‘g 2
r}
OOEN

.
.

R
OO

L“L '

would require change to implement QM technology. Therefore, specific changes to
AFR 800-14 are not recommended at this time. General recommendations are made

in the next section that should be considered when updating AFR 800-14.

MIL-STD-490 includes information about type (A, B, C, D, and E) specifications. Of

particular interest are sections on the B-5, Computer Program Development Specifi-

cation, and C-5, Computer Program Product Specification. These sections and

references to them are being modified to be consistent with DOD-STD-SDS. The type

B-5 will become software development specification and will include the software

ol
‘r"- : .
U
R
SN W S

l‘('] . .

g requirements specification and the interface requirements specification. The type T j-_'l
Ei C-5 will become software product specification and will include the software top-level ; .
design document, software detailed design document, data base design document, and T ‘1

interface design document. References will be made to the DIDs in DOD-STD-SDS for

! content and format descriptions. Because of these modifications, no changes will be

,v
b

required to MIL-STD-490 to implement QM technology.

STD-SDS and its associated DIDs. Because of these modifications, no further changes

¢ » 1
! MIL-STD-483 presently contains appendices describing CPCI specifications. Changes 1{‘.5'_.-:;
are being made to make MIL-STD-483 consistent with DOD-STD-SDS. Several f"-ﬁj

=T, W ‘l

h appendices are being deleted (concerning software specifications) because content 1
% information is either inconsistent or redundant with information contained in DOD- !‘{
1

will be required in order to implement QM technology.

MIL-5-52779 is expected to be replaced by DOD-STD-SQS and will not be imposed on

contractors in the future. Therefore, changes to MIL-5-52779 are unnecessary.

MIL-STD-1521A addresses technical reviews and audits. The proposed update (MIL-

STD-1521B) has been modified to incorporate two new reviews and additional informa-

tion pertaining to other reviews. New sections have been added for the software

AN NCORSaNE KHE

specification review (SSR) and test readiness review (TRR) required by DOD-STD-SDS.
Major modifications have been made to sections covering the system design review

- (SDR), preliminary design review (PDR) and critical design review (CDR) to

accommodate the evolution of information required by DOD-STD-SDS. QM technology
- recommends reviewing certain data at these reviews. Thus, some changes to the ‘
' updated MIL-STD-1521B are required. o

WA St A i

i hin o¢ SERIAA SO AR S0 e SEL a4

6.3 DETAILED RECOMMENDED CHANGES

DOD-STD-SDS and DOD-STD-5QS and their associated DIDs are the primary focus for
recommended changes to implement QM technology. General recommendations are
included for other documents. The list of documents recommended for change is
shown in Table 6.3-1.

6.3.1 DOD-STD-SDS

Quantitative quality factor requirements should be specified at the highest
development level by the program office. The contractor's responsibility is to ensure
that the requirements are flowed down to the CSCI level as appropriate and to define
a methodology that will be used to demonstrate compliance with requirements.
Specification of requirements will be ensured by DOD-STD-5DS, while the definition
of a methodology to show compliance will be required by DOD-STD-SQS. The
following changes are recommended to DOD-STD-SDS.

a. Section 5.1: Rewrite the first sentence as follows, "The contractor shall establish
a complete set of functional, performance, interface and quantitative quality

requirements for each CSCL"

b. Section 5.1.1.4: Add after item (4), "(5) the specification of quantitative quality

requirements," and change item (5) to item (6).

c. Section 5.1.3: Change "and interface requirements" in the second sentence to read,

"interface, and quality requirements . . ."

d. Section 5.6: Add the following section, "Section 5.6.1.4 The contractor shall
demonstrate compliance with the quality requirements in accordance with the
Software Quality Assurance Plan." It is recognized that the software quality
assurance plan may be renamed the software quality program plan or software
quality evaluation plan. This recommended change should be modified

appropriately.

e. Section 5.8: In item (2), insert before "evaluation" the word "quantitative".

o .
Ly L
¢ |
S
P g A
RS
'
e
SRSt

..
j

o .
A .1 Lot .
a3 5 OB

e
AL,

Table 6.3-1 Documentation Recommended for Revision

T
TYPE NUMBER TITLE
REGULATION AFR B00-14,vol li Acquisition and Support Procedures for Computer
Resources in Systems and AFSC SUPPLEMENT to AFR800-14
MIL-STD-1521A/8 Technical Reviews and Audits for Systems, Equipment, and n
Computer Programs ORI
STANDARD DOD-STD-SDS Delense System Software Development (Draft) . !
DOD-STDSQS Software Quahty Standard {Draft) .
DI-§-x101 System/Segment Specification . O
D10 DI-R-X105 Soltware Quality Assurance Plan - -
DI-E-X107 Soltware Requirement Specification IR
- — o 4
ASD-TR-78-7 Airborne Systems Soltware Acquisition Engineerning , S !
Guidebooks: Reviews and Audits n
ASD-TR-77-(1) Soltware Acquisition Engineering Guidebook
Series; Reviews and Audits
GUIDEBOOK ESD-TR-78-117 Soltware Aquisition Management
Guidebooks: Reviews and Audits
ASD-TR-78-8 Anborne Systems Software Aquisition Engineenng
Guidebooks: Quality Assurance
ASD-TR-78-47 Software Acquisition Engineerning Guidebook
Series: Software Quality Assurance
ESD-TR-77-255 Software Acquisition Management
Guidebooks: Software Quality Assurance
!
r
3 -
| ¥ B
L. -
b»'

¥

:',.'.;':"

[

o)}
1
[=a]
vy

.
LY
s

o'y

NS S B AN

4
b
.

Section 5.8.2: Insert the word "quantitative" prior to "system" in the first and

i

second sentences.

v v

g. Section 5.8.2a: Rewrite to read "That quantitative quality requirements for
factors such as efficiency, integrity, reliability, survivability, usability, correct-
ness, maintainability, verifiability, flexibility, portability, expandability, reusabil-

ity, and interoperability have been established."

- -
rl » T B B B . T "
N . . - v

6.3.2 DI-S-X101 System/Segment Specification

Section 3.4.3: Replace with the following, "Additional Quality Factors. This

paragraph shall specify additional quality factor requirements, not mentioned in prior
paragraphs, in quantitative terms and any specific conditions under which the

requirements are to be met."
6.3.3 DI-R-X105 Software Quality Assurance Plan

This DID will be rewritten as the software quality program plan or software quality
evaluation plan. Specific changes cannot be recommended at this time. Either way, a
change should be made to require the contractor to define the methodology and
framework that will be used to demonstrate compliance with the quantitative guality
requirements. A specific QM methodology should not be imposed on the contractor.
Therefore, the contractor should be required to define that methodology which will be

used in this document.
6.3.4 DI-E-X107 Software Requirements Specification
This DID is presently written to encourage the specification of quality factors in

quantitative terms. If the final version does not differ from this version in Section

3.7, only a minor change will be required as follows:

Section 3.7.7: Change "Testability" to "Verifiability".

T NP TP T W, e —— LASUA Iand Aa agh be Sl S A Sall Al v ad At etk Al ol » ol Saeie A e el bl /e it Aalh A A A v Mot
B

. s
Py PP,

6.3.5 DOD-STD-SQS

This proposed DOD software standard will require the contractor to establish a
software quality program. According to recent decisions, DOD-STD-SDS will cover
that part of the software quality program that affects software development, while
DOD-STD-5SQS will cover evaluation activities. The next draft of DOD-STD-SQS is

due out for review in January, 1985.

Certain changes should be made to DOD-STD-SQS to implement QM technology. A
requirement should be added to identify the specific metrics and framework that the

contractor will use to show compliance with the quality requirements for software. A

proposed data item description (DID) has been developed as part of this contract to g ‘!
report results of evaluations at various points in time. This DID, Software Quality ;
Evaluation Report (see App. C), should be approved to be used with DOD-STD-SQS.]
The standard should also be modified to discuss use of this DID throughout the life R
cvcle and the specific information to be evaluated at each review point. Quality —.-—-—«——--1'
|
factors should be updated to be consistent with the list in this report. These changes
should be consistent with DOD-STD-SDS so that the two DOD software standards _
complement each other. |
» {
6.3.6 MIL-STD-1521B -
This military standard addresses technical reviews and audits conducted during the]
software development process. It is expected that MIL-STD-1521B will be released -.—-—-!
with only minor changes to its current draft form. Thus, the following recommended L
changes are to the proposed revision B, rather than MIL-STD-1521A. v -
a. Section 10.3.1.4 (SRR): Add item, "d. The quality factors to be included in the !‘—"“!
requirements and the quantitative values for them." PR
RS
b. Section 20.1 (SDR): Add "and quality" after the word "test" in the first sentence. g i
®
c. Section 20.3.1 (SDR): Change item g to read, "Hardware and software quality S '1
requirements." T ::;1
o
=
6-8 S
1
[] K
) R
! > N el
- L L - RN,
l--l;"l-;..“q‘"‘.x,.-.;_..‘--.-' ''''''' A .z:r‘f-‘_.r >

e LR S

NS

e et e . . v e .
DI WA U R i S T R P Iy)

d. Section 20.3 (SDR): Add item "20.3.14 Review the software quality evaluation

report to ensure that applicable quality requirements are being satisfied."

e. Section 30.2 (SSR): In item g, change "testability" to "verifiability, survivability,
expandability."

f. Section 30.2 (SSR): Add item "h. The software quality evaluation report for

evaluation against the quality requirements."

g. Section 40.2.2 (PDR): Add item "n. Review the software quality evaluation report

for evaluation against the quality requirements."

h. Section 50.2.2 (CDR): Add item "e. The software quality evaluation report for

evaluation against the quality requirements."

i. Section 70.4.12 (FCA): Add item "g. The software quality evaluation report shall

be reviewed to ensure that all quality requirements for software have been met."
6.3.7 AFR 800-14

As was stated earlier, this regulation will be changed extensively to be made
consistent with DOD-STD-SDS. When QM technology is implemented, the following

general changes are recommended to the revised AFR 800-14.

Volume I covers general policy on management of computer resources. An item should
be added to Section 3 directing that a trade-off study be conducted on quality factors
for software so that quality requirements can be specified at the system level in

quantitative terms based on the framework and methodology to be implemented.

Volume Il defines detailed procedures to be used in the software acquisition process by
Air Force personnel. Changes should eventually be made to the information contained
in the present Sections 2-3, 2-4, and 2-8 io generally describe the additional activities
in the various system acquisition and software development phases that are a part of
using QM technology. This includes the specification of quality factors (and related
trade studies) and the quantitative evaluation of quality levels at various points in the

acquisition life cycle.

[ARERS

® .

o
.1;§_. - 4
. K j
-
*
.o 4
»
.)
»
SRR
]
® {
S
o r
Y
® [
R
® ¢
R
REURRRES
o]
TN
B
»
" 4

: LA

. N .
Lt «
P v Y

T gy

‘VW:"'
.

MBS e o0 e M

APl W S

In terms of planning, the information in present Sections 3-2, 3-4, 3-6, and 3-7 should
be modified to identify the specification of quality factors for the software in
quantitative terms and to describe trade studies conducted in order to determine
requirements for quality factors. It is assumed that Section 3-9 (Computer Program
Development Plan) will be removed or revised to be consistent with DOD-STD-SDS.
The last changes should be made to information presently in Section 4-9 (Formal
Technical Reviews) to incorporate appropriate changes to be consistent with those
recommended to MIL-STD-1521 in Section 6.3.6 of this report.

6.3.83 Guidebooks

Changes to guidebooks are not required to implement QM Technology as they are not
policy documents. They are used to teach new Air Force personnel about policies. As
such, it would be useful, though, to update certain guidebooks when implementing QM
technology. It is assumed that these guidebooks will be updated in the near future to
reflect changes resulting from the implementation of DOD-STD-SDS and DOD-STD-
SQS. These modifications will be extensive for the guidebooks addressing quality

assurance.

Three of the guidebooks address reviews and audits. These three guidebooks will
require minor updates to incorporate information reflecting changes in MIL-STD-1521
resulting from implementation of QM technology. Specific information to be added to
these guidebooks include a discussion of quantitative requirements for quality factors
and use of the Software Quality Evaluation Report at each of the various formal
reviews as appropriate (SDR, SSR, PDR, CDR, and FCA). The three revised
guidebooks should be evaluated for appropriate changes when QM technology is

implemented.

The other three guidebooks address software quality assurance and are based heavily
on AFR 800-14 and MIL-5-52779. With the revisions to AFR 800-14 and the
replacement of MIL-5-52779 due to DOD-STD-SDS and DOD-STD-SQS, these guide-
books will probably be completely rewritten. These guidebooks will then discuss an
entire software quality program consistent with the two new DOD software standards.
Some general information should be incorporated into these guidebooks about QM

technology along with references to the two new guidebooks developed under this

[*))
1
p—
(=)

........
..........

'... .- .' N MR N L
NERDGY SV _Sh SO SHge S ettt iadnttiadia U IR SN WP P Ve

FC
<
b
FL
oF
b
»0
-

.
e e

-~

b e 4 Je n o g AR SaFlenf i

contract (see Vol. II and Vol. II): Software Quality Specification Guidebook and
Software Quality Evaluation Guidebook.

General subjects that should be covered in summary form include (1) a discussion about
using QM technology in the acquisition process, (2) responsibilities for specification
and evaluation of quality factors, (3) initial planning to include a software quality
metric framework and trade studies necessary to determine requirements, (4) use of
the Software Quality Evaluation Report at various review points, (5) an overall
orientation of how QM technology fits into each life-cycle phase, (6) how it is to be
applied to subcontractors, (7) identification of quality factors and a definition for
each, and (8) the relationship between existing guidebooks and the two new guidebooks
developed under this contract. Detailed directions concerning which quality factors to
include, how to specify quantitative requirements for them, and how to evaluate them
using QM technology are included in the new guidebooks. These two guidebooks will

complement the existing ones.

oA . D ' DR

. o R
- ~ LY \'._._

N - . . . - - e . - -
. . . N . B Wt =
P VPR LA A W .~ e Al et s A T S actat at A alalatatatataia i eliata aladimtiata kel

o
[b

.

-
.‘ "‘
o

slam.

-
PR

\‘-, DY)
el

0
N
il

‘
bacs aca

.

.

(W W DS

l

R
e '_-.q
. . \.~
- -. ‘... -lh
N
4
-
ST
- . ‘l
".F‘A © o
SN
b
S
)

1 1
R
“J‘.;__L"

3
St
PR

-)‘ " . ‘.
LA- alta

- ATt
At ir" B A

B arars

Pl i}

[

APPENDIX A
METRIC WORKSHEETS

(The contents of this appendix are in Vol. IIL., App. A)

. e e

L

.

. o
B
. .
-

. c e .

[7e]
[
13}
73]
m L
x
(o)
z 9
w A
[~ %
: 2
=
Q
<
2.

(The contents of this appendix are in Vol. III, App. B.)

e C adii iy ® 2 alia i~ ol i e ST TR R ER TR U WER LT E R TR W

APPENDIX C
SOFTWARE QUALITY EVALUATION REPORT

(The contents of this appendix are in Vol. II, App. C and Vol. IlI, App. C.)

"\".V N ‘» .

- - - 'I l . -.. . - .
'-‘-'- ST, . R
e e N \ \ “u L% \ N RS

WA wig” \.. \-hl.“k-j WY

-, \.‘
o
1_‘-“‘-5.-&-1‘\- <

'\ -\- ‘.

AN PR & 1-;;.._;- b

€ ¥ 9AF A o K oA 5K A K RSP AT ALK

e anemne o cny an o o o o

MISSION
of

Rome Avr Development Center

RADC plans and executes research, development, test and
selected acquisition programs in Sdupport of Command, Control
Communications and IntelZigence (C31) activities. Technical
and engdineerning suppornt within areas 0f technical competence
L8 provided to ESU Program Offices (POs) and other ESD
elements. The prineipal technical mission areas ane
communications, electromagnetic guidance and contnol, sur-
velllance of ground and aerospace objects, ntelligence data
collection and handling, information system technology,
s0lid state sciences, electromagnetics and electronic
reliablity, maintainability and compatibidity.

AL JIR

/)‘«l
AA_._‘ .:i.A....',.'.

sl

S A .

(od

SCPSOP JOPJoRFON T e

TO IO AN S S SF S S AL S

YV R)

£ s

LIRS D

